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Abstract

We have studied the influence of the dissipation number on the behaviour of a magnetohydrodynamic system in a
rotating liquid Cartesian box in the presence of a finitely conducting solid box beneath the liquid. The dissipation number
appears in dimensionless description of the three physical mechanisms in the heat equation: the adiabatic heatingrcooling,
the dissipative heating and the Joule heating. We have demonstrated that the adiabatic heatingrcooling can strongly suppress
the horizontal gradient of temperature, if the surface temperature is of the same order as the temperature drop over the liquid
layer. This effect stabilizes the convection pattern. We hypothesize that the adiabatic heatingrcooling could be the
substantial stabilizing mechanism in systems with a high Rayleigh number, which seem to be suitable for the description of
the magnetohydrodynamics of the Earth’s core. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Dynamo theory; Magnetoconvection; Dissipation number

1. Introduction

The magnetohydrodynamic dynamo problem rep-
resents a complicated non-linear dynamical system
described by a set of partial differential equations
Ž .Roberts, 1992; Braginsky and Roberts, 1995 , which
expresses fundamental physical laws of conservation
Ž .conservation of mass, momentum and energy to-
gether with Maxwell’s equations for the magnetic
induction. The advent of massively parallel super-
computers has enabled the modelling of the magne-
tohydrodynamic system’s evolution under the condi-
tions, which are in several aspects close to those in
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the Earth, and to obtain the Earth-like behaviour of
Žthe magnetic field Glatzmaier and Roberts, 1995,

.1997; Kuang and Bloxham, 1997 . One of the prob-
lems is that due to our lack of knowledge of the core
material properties, the considered span of parame-
ters controlling the system is very wide, which re-
quires to perform complex investigations throughout
the parameter space. However, the extreme computa-
tional cost of the modelling of the full system in
spherical geometry as well as problems with reach-
ing sufficiently high resolution in turbulent regimes
result in monitoring just one or few parameter con-
figurations and thus much remains to be done to
understand the geodynamo.

This is the reason why parameter studies of sim-
plified systems can help in understanding the basic
physics of nonlinear magnetohydrodynamics. For ex-
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Ž .ample, Busse et al. 1998 studied the influence of
Ž .the Prandtl number, Brestensky et al. 1998 dealt´

with the magnetoconvection instabilities in depen-
dence on the Roberts number, Walker and Barenghi
Ž . Ž .1997 or Cupal 1998 concentrated on the situation
created by a low Ekman number and Matthews
Ž .1997 concerned with the magnetoconvection for
the Rayleigh number close to its critical value, which
can be appropriate for astrophysical applications. In
these studies, the heat equation was considered in the
Boussinesq approximation, which means that only
heat conduction and advection were taken into ac-
count. However, in the extended Boussinesq approx-
imation the adiabatic as well as Joule heating and
dissipation terms occur. In the dimensionless form,
they are expressed by means of the dissipation num-

Ž .ber Christensen, 1989 . The influence of the Joule
heating and dissipation is probably not very impor-
tant but the adiabatic heatingrcooling can influence
the convection substantially as it acts against the
buoyancy force and represents thus a strong stabiliz-
ing factor in convection models with a relatively

Žhigh dimensionless surface temperature Mistr,
.1996 .

The problem of convection stability may be of a
great importance in planetary dynamo studies be-
cause it can be demonstrated that geomagnetic field
structures similar to those observed in geomagnetism
can be reached in dynamo models with zero dissipa-
tion number and with the Rayleigh numbers close to

Ž .the critical value Christensen et al., 1998 . Esti-
mates of the outer core viscosity span almost 15
orders of magnitude with the bounds 10y3 Pa s and

12 Ž .10 Pa s Secco, 1995 but the other physical
parameters, which are necessary for the evaluation of
the Rayleigh and Ekman numbers, are much better

Žconstrained Cardin and Olson, 1994; Braginsky and
.Roberts, 1995 . If we take into account that the

critical Rayleigh number for thermal convection in a
rotating spherical shell with zero dissipation number
and the Earth-like Prandtl number is about 8 Ey17r15,

Žwhere E is the Ekman number Cardin and Olson,
.1994 , we get that the Rayleigh number of the outer

core is at least seven orders of the magnitude higher
than its critical Rayleigh number. The question then
arises why the magnetohydrodynamics of the Earth
generates the similar field to that obtained from
simulations with very low Rayleigh numbers. There-

fore, the natural conjecture is that a stabilizing physi-
cal mechanism is present in the real planet.

The aim of this study is to demonstrate the stabi-
lizing influence of the dissipation number on the
vigour of a magnetohydrodynamic system. To sim-
plify the computations and to reach a higher resolu-
tion, we modelled thermal convection heated from
below in a rotating liquid Cartesian box. The convec-
tion is coupled with the magnetic field. To simulate
the effect of the Earth’s inner core on the evolution
of the magnetic field, the computations were per-
formed in the presence of a finitely conducting solid
box just beneath the liquid box, whereas an insulator
was assumed to fill the space above the liquid, and
reflecting boundary conditions were used at the side-
walls. Although the employed geometry is unrealis-
tic, it was shown in many studies that the basic
physics can be demonstrated in Cartesian geometries
Že.g., Soward, 1980; Skinner and Soward, 1988;

.Jones and Wallace, 1992 . We believe that the stud-
ied system is capable of answering the question as to
the potential importance of adiabatic heatingrcool-
ing in planetary dynamos.

2. Description of the model

We have studied numerically the time-evolution
of self-consistent magnetohydrodynamic system in
two rotating three-dimensional rectangular boxes,
where a homogeneous gravitational field is acting

Ž .downward parallel to the z-axis see Fig. 1 . The

Fig. 1. Computational domain.
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Ž .upper box of sizes a d=a d=d is filled by ax y

fluid, which is considered to be homogeneous, New-
tonian and incompressible. The convection is driven
by the temperature drop between the bottom and the
top boundary of the upper box. The model includes
the Coriolis force with rotation axis parallel to the
z-axis, the inertial force and the Lorentz force. The
laws of conservation of mass, momentum and energy
and the magnetic induction equation:

™div Õs0, 1Ž .
™EÕ

™ ™ ™2r sr n= Õyr ÕP=Õy=P0 0 0
Et

™ ™ ™qr a TyT ge y2 r V e =ÕŽ .0 0 z 0 z

1 ™ ™
q curl B =B , 2Ž .Ž .

m0

ET
™2r c sk= Tyr c ÕP=T0 p 0 p

Et

T™ ™ ™qr n =Õq =Õ :=ÕŽ .ž /0

2l ™ ™ ™q curl B yr a gT ÕPe , 3Ž .Ž . 0 z
m0

™
EB ™ ™™2sl= Bqcurl Õ=B , 4Ž .Ž .
Et

™determine the evolution of the flow velocity Õ, the
pressure deviation from the hydrostatic state P , the

™
temperature T , and the magnetic induction B.
Maxwell’s equation:

™
div Bs0 5Ž .

is treated as an initial condition of the simulations
Ž .and, owing to Eq. 4 , it is then satisfied during the

time-evolution. The meaning of the symbols is sum-
marized in Table 1.

The extended Boussinesq approximation is em-
ployed, i.e., the specific entropy of the fluid depends
not only on the temperature but also on the hydro-
static pressure, and the Gruneisen’s ratio Gsar¨
Ž .r bc is set to infinity. Since the isothermal0 p

compressibility b does not influence the form of the
Ž Ž ..heat equation Eq. 3 , and since b and the dissipa-

Table 1
Review of used symbols, physical parameters appearing in the
magnetohydrodynamic equations and the definition of dimension-
less numbers

Symbol Meaning SI Unit

d vertical size of the upper box m
d vertical size of the lower box mi

a , a horizontal sizes of the box relative to d lx y
™ ™ ™ Ž .e ,e ,e unit base vectors orthogonal lx y z

T temperature at the top boundary K0

DT vertical temperature drop K
y3r reference density at T kg m0 0

™ y1V Earth’s rotation rad s
2 y1n kinematic viscosity m s

™ y2g gravitational acceleration m s
2 y1k thermal diffusivity m s
y1a thermal expansivity K
y1 2b isothermal compressibility kg m s

2 y2 y1c specific heat at a constant pressure m s Kp
2 y1l magnetic diffusivity m s

2E Ekman number, Esn rV d l
Pr Prandtl number, Pr sn rk l
Pm Prandtl magnetic number, Pmsn rl l

3Ra Rayleigh number, Ras a gd DTrkn l
Dn dissipation number, Dns a gdrc lp

Ž .tion number Dn see Table 1 are thermodynamically
Ž .independent parameters Tritton, 1988 , the most

important consequence of the infinite Gruneisen’s¨
Ž Ž ..ratio is the incompressible form Eq. 1 of the

continuity equation. While not as complicated as
fully compressible models the extended Boussinesq
approximation implies that the adiabatic heating

™ ™Ž .term yr a gT ÕPe arises in the energy equation0 z
Ž .Christensen, 1989 . Moreover, the dissipative heat-

™ ™ ™TŽ Ž . .ing r n =Õq =Õ :=Õ and the Joule heating0 ™ 2Ž .Ž .lrm curl B terms are also included. Scaling the0

lengths, time, velocity, temperature deviation TyT ,0

pressure and magnetic induction by the factors d,
2 2d rl, lrd, DT , r nlrd and 2 r Vm l , respec-(0 0 0

Ž . Ž .tively, yields the dimensionless form of Eqs. 2 – 4 :

2™EÕ Pm RaŽ .
™ ™ ™ ™2sPm= ÕyÕP=ÕyPm=Pq T ez

Et Pr

2 Pm 2 Pm ™ ™™ ™y e =Õq curl B =B , 6Ž .Ž .zE E
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ET Pm
™2s = TyÕP=T

Et Pr

DnPr T™ ™ ™q =Õq =Õ :=ÕŽ .ž /RaPm

22 DnPr T™ 0 ™ ™q curl B yDn Tq ÕPe ,Ž . zž /ERaPm DT
7Ž .

™
EB ™ ™™2s= Bqcurl Õ=B . 8Ž .Ž .
Et

The lower box is considered to be made of the
same, but motionless, material. In other words, we

Ž .will only deal with the dimensionless equation:

™
EB ™2s= B 9Ž .
Et

in this box.
The behaviour of the system is controlled by

the six dimensionless parameters: Ekman, Prandtl,
Prandtl magnetic, Rayleigh and dissipation numbers
and by the ratio of the top surface temperature to the

Ž .vertical temperature drop T rDT see Table 1 . The0
Ž .upper lower box is the Cartesian representation of

Ž .the outer inner core in our model. We also employ
boundary conditions which are simpler than those in
the Earth. We take into account impermeable, free-
slip boundary conditions at all boundaries of the
upper box, i.e.:

EÕ EÕt s
Õ s s s0. 10Ž .nž /En En sidewalls , top , bottom

As it was already discussed by Kuang and Bloxham
Ž .1997 , who have been using the same boundary
conditions, ‘‘this may be a better approximation to
the dynamical regime of the Earth’s core as it effec-
tively reduces the boundary layer thickness to zero
because it is unlikely that the thin viscous boundary
layers in the Earth’s core are important in generating
a planetary scale magnetic field’’. The subscript n
corresponds to the normal component of a vector, the
subscripts t and s denote the tangential components
of a vector and ErEn is the derivative along the outer
normal to the boundary.

We prescribe the temperature values at the top
and at the bottom of the upper box, while no heat
leaves the box through the sidewalls:

T s0, 11Ž . Ž .top

T s1, 12Ž . Ž .bottom

ET
s0. 13Ž .ž /En sidewalls

The diffusion equation is solved in the lower
layer, allowing only the z-component to be non-zero
at its bottom plane:

EBn
B sB s s0. 14Ž .t sž /En C

We use the reflecting conditions at both the upper
and lower box sidewalls, i.e.:

EB EBt s
B s s s0. 15Ž .nž /En En sidewalls

Although the electrical conductivity of the lower
mantle of the Earth can be responsible for some

Ž .observable effects Busse, 1992 , we considered the
space above the upper layer as an insulator to sim-
plify the model. This implies that the magnetic field
in the mantle is governed by the equation:

™2
= Bs0. 16Ž .

™
If we expand B into the Fourier series:

`
™ ™̂ w2p iŽŽ p x r a d .qŽq yr a d ..xx yB x , y , z s B z e ,Ž . Ž .Ý p q

p ,qs0

17Ž .
Ž .Eq. 16 yields:

™̂ 222d B z p qŽ . ™p q ˆ2y4p q B z s0,Ž .p q2 ž / ž /a d a dd z x y

;p ,q. 18Ž .
Ž .The solution of Eq. 18 , that does not diverge for

z™`, has the following form of decaying exponen-
tial function:
™ ™ˆ ˆB z sB dŽ . Ž .p q p q

=

22p q
exp y2p q zyd .Ž .)ž / ž /a d a dx y

19Ž .
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All magnetic boundary conditions are thus homoge-
neous in our model, which implies that the magnetic
field can be generated only by motions of the liquid
in the upper layer.

3. Numerical methods

ŽIn order to satisfy the momentum equation Eq.
Ž ..6 together with the auxiliary divergence-free con-

Ž Ž ..dition Eq. 1 , we have employed the vorticity:

™ ™
vscurl Õ. 20Ž .

Ž .Applying the curl operation to Eq. 6 we get:

™Ev
™ ™ ™ ™ ™2sPm= vqvP=ÕyÕP=v

Et

2Pm Ra 2 PmŽ .
™ ™ ™q curl T e q e P=ÕŽ .z zPr E

2 Pm ™ ™ ™ ™
q BP= curl B y curl B P=B .Ž . Ž .

E
21Ž .

Ž . Ž .Eq. 21 replaces Eq. 6 during time integration. In
each time step, the velocity vector is computed from
the vorticity by applying the Fourier transform to

Ž . Ž .Eqs. 20 and 1 , solving the set of three linear
algebraic equations in the spectral domain and re-
turning back by the inverse FT.

Ž . Ž . Ž .The systems of Eqs. 21 , 7 and 8 is solved on
Ž .a 64=64=64 regular grid, i.e., the vertical reso-

lution is twice the horizontal one and is the same
throughout the entire box. The inner core box, where

Ž Ž ..only the magnetic diffusion equation Eq. 9 is
solved, has the same horizontal size and the same
resolution as the outer core box, its vertical size is 42
layers. The spatial derivatives were performed by the

Žeighth order finite difference scheme Fornberg,
.1996 . The boundary conditions are satisfied by sym-

metric or antisymmetric expansion of the quantities
at four grid points outside the computational domain.
The magnetic induction at the top of the upper box is
expanded in the insulator by 2D Fourier transform

Ž .according to Eq. 19 .
The time integration is performed by the second

order Runge–Kutta method. The time step is vari-

able and is computed in order to satisfy the
Courant–Friedrichs–Levi criterion. The FFT algo-

Ž .rithm Press et al., 1992 is used to compute 2D and
3D Fourier transforms.

4. Results

We have studied the behaviour of the magnetohy-
drodynamic system described in the previous sec-
tions for a sa s2 and the three different sets ofx y

parameters which are summarized in Table 2.
ŽIn Case I, the law of energy conservation Eq.

Ž ..7 was simplified by neglecting the adiabatic, the
viscous and the Joule heating. The system evolved
close to a steady state due to the low Rayleigh
number. The typical flow and temperature patterns
are in Figs. 2 and 3. They are highly symmetric with
one large upwelling along the diagonal of the box.
This large upwelling creates lateral temperature gra-
dients in the middle depth comparable to the vertical
temperature gradient in the lower and upper bound-
ary layers. The magnetic induction was initially set

Žto be weak about four orders lower than the dimen-
.sionless velocity homogeneous vertical field. Al-

though the intensity of the magnetic field increased
during the simulation, the influence of the Lorentz
force on the convection pattern was not significant.
The orientation of the magnetic field lines remained
dominantly vertical, see a typical snapshot in Fig. 4,
because the magnetic field in the lower solid box
was kept close to a homogeneous state. However, the
distortion of the field lines by horizontal motions can
be clearly seen.

Table 2
The choice of dimensionless parameters controlling the studied
system

Parameter Case I Case II Case III
y2 y2 y2E 2=10 2=10 2=10

Pr 1 1 1
Pm 1 1 1

4 4 5Ra 10 10 10
Dn 0 0.2 0.2
T rDT – 4 40
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Ž . Ž . Ž .Fig. 2. Case I: Horizontal velocity components and temperature in the three horizontal cross-sections: a zs0.15, b zs0.5, c zs0.85.
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Fig. 3. Case I: Vertical velocity components and temperature in
Ž .the two vertical diagonal cross-sections: a perpendicular to the

Ž . Ž .major upwelling from xs0, ys0 to xs2, ys2 , b along
Ž .the major upwelling from xs0, ys2 to xs2, ys0 .

In the Case II the effect of the adiabatic heatingr
cooling together with the viscous dissipation and the
Joule heating was included by putting Dns0.2.
This corresponds to the estimated values of a and

Ž .c , presented by Braginsky and Roberts 1995 ,p

which yield Dns0.12 near the inner core boundary
and Dns0.5 near the core–mantle boundary. The
convection pattern dramatically changed, which is
visible in Figs. 5 and 6. It is again symmetric but the
two major upwellings are present at the two opposite
sides of the box and they are followed by the two
downwellings at the remaining sides. Moreover, the
magnitude of velocity was about five times lower

than in the Case I. The most striking is the change of
the temperature field. It became vertically stratified
and close to the conductive solution with only small
horizontal gradients. The upwellings are made of
only slightly warmer material than their surround-
ings. The dominantly vertical dependence of temper-
ature is caused by the balance between the adiabatic

™ ™Ž .heatingrcooling term Dn TqT rDT ÕPe and the0 z
™heat advection term ÕP=T in the energy equation

Ž Ž ..Eq. 7 . The ratio of the surface temperature T to0

the temperature drop over the convecting layer DT
plays the substantial role in the adiabatic heatingr
cooling in our simulations. We have chosen this ratio
to be equal to 4, which corresponds to the core–man-
tle boundary temperature 4000 K and the inner core
boundary temperature 5000 K. This choice is consis-

Žtent with the iron melting experiments Boehler,
.1996 . This relatively high value of the ratio is the

reason why the role of adiabatic heatingrcooling is
much more important in the core than in the mantle
convection. The viscous dissipation contributed to
decreasing the vigour of the flow. The run was
started from the state described in Case I; the magni-
tude of the dissipation term in the heat equation was
almost comparable to the magnitude of the adiabatic
heating term but it became less important during the
evolution as demonstrated in Fig. 7. The magnetic
field evolved similarly as in the previous case with
very weak feedback to the convection through the
Lorentz force and the Joule heating. The field lines

Fig. 4. Case I: The magnetic field lines in the lower and upper
boxes.
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Ž . Ž . Ž .Fig. 5. Case II: Horizontal velocity components and temperature in the three horizontal cross-sections: a zs0.15, b zs0.5, c
zs0.85.
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Ž .Fig. 6. Case II: Vertical velocity components and temperature in the two vertical cross-sections: a perpendicular to the x-axis at xs1.0,
Ž .b perpendicular to the y-axis at ys1.0.

Ž .are in Fig. 8. Hollerbach and Jones 1995 empha-
sized the stabilizing role of the finitely conducting
solid inner core in the evolution of the geomagnetic
field. In our case it is clearly visible, that a com-
pletely different convection pattern generates the
magnetic field, which is similar to that in the previ-
ous case. This suggests that the role of the conduct-
ing solid layer may be substantial not only for the
stability of the field but also for its morphological
characteristics.

To study the influence of the Rayleigh number,
we increased this number by one order of magnitude

Fig. 7. Case II: Time evolution of the absolute value of the
Ž . Ž . Ž .adiabatic solid line , viscous dotted line and Joule dashed line

heating averaged over the volume of the upper box.

in the Case III. The temperature remained vertically
stratified and the magnitude of its horizontal varia-
tions increased only slightly. The consequence was
that the buoyancy force just increased by one order
and the kinetic energy increased by two orders of
magnitude. This demonstrates the key stabilization
effect of adiabatic heatingrcooling on the tempera-
ture field, which remains close to the conductive
solution for various Rayleigh numbers.

Fig. 8. Case II: The magnetic field lines in the lower and upper
boxes.
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5. Conclusions

The adiabatic heatingrcooling can play the sub-
stantial role in the thermal convection under the core
conditions. The problem is that the planetary dy-
namos are probably driven partly by thermal buoy-
ancy and partly by compositional buoyancy, and thus
the applications of our results to planetary models
may be questionable. For example, Lister and Buffet
Ž .1995 conjectured that the thermal convection was
dominant in the early Earth but now contributes only
about 20% of the dynamo power. Nevertheless, the
potential vertical stratification of temperature close
to the conductive profile could be one of the reasons,
why the seismic tomography is not able to detect any
lateral variations of P wave velocities in the Earth’s

Ž .core Morelli and Dziewonski, 1987 . We have
shown that the suppression of lateral temperature
variations can be very efficient, which may lead to
enhancement of the stability of temperature pattern.
We hypothesize that this could be the explanation of

Ž .the fact, demonstrated by Christensen et al. 1998 ,
that the Earth-like features of the magnetic field can
be reached by models with low Rayleigh numbers.
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