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Figure 7. S-wave velocity maps at 80, 140 and 200 km in depth. Velocity perturbations are in per cent with respect to the average model shown in Fig. 8.

is only related to station locations and not to station-earthquake
locations.

At shallow depths (≤70 km), the correlation with the SAVANI
model remains high (0.70–0.75), although correlation with the
DR2012 model decreases down to 0.40. At shallow depths, the main
difference between these models is related to the shallow-layer cor-
rection. All three models use crust2.0 or crust1.0 shallow models,
and the main issue is how crustal correction is implemented. In
this study, the crust1.0 model is horizontally smoothed and used as
the a-priori model in each gridpoint, without being inverted. Then,
beneath Tibet, where the crust thickness is 75 km in the crust1.0
model, our model shows a fast mantle anomaly at 80 km in depth,
whereas the DR2012 and SAVANI models show slow anomalies.
Their slow anomalies are related to the vertical smoothing of the
crust. Deeper than 140 and 200 km in depth, all three of the models
show a fast anomaly beneath Tibet.

We also compared the models at the four locations shown in Fig. 8.
All four of these models show consistent fast anomalies beneath
cratons and slow anomalies beneath hotspots. But the amplitudes
and depths of the velocity anomaly differ (Fig. A3). For example,

in West Africa, the HUM2 model is similar to the SAVANI model
between 50 and 100 km in depth and closer to the deeper DR2012.
Beneath Dharwar craton, the minimum velocity is shallower (about
150 km) in model HUM2 than in models SAVANI and DR2012,
where it is close to 200 km.

Despite some of the differences discussed above, the high cor-
relation between tomographic models derived from earthquake and
noise data confirms that hum data can provide accurate information
on the earth structure. Earthquake and hum data provide different
path coverage, and therefore they are complementary data sets and
they should be inverted jointly to improve the Earth models.

5 C O N C LU S I O N S

We applied the new PCPWS method based on the analytical sig-
nal developed by Schimmel et al. (2011) to derive a new global
tomographic model of the upper mantle from the hum recorded
worldwide in the period band 30–250 s.

We first computed the phase correlograms between station pairs
to extract the phase-coherent signals. We stacked the correlograms
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Figure 8. S-wave velocity as a function of depth for two cratons (red, West
Africa; green, Dharwar) and two hotspots (blue, Afar, purple, Cape Verde).
The a-priori reference model is plotted in light blue and the global averages
model obtained after inversion is plotted in black.

using the time–frequency phase-weighted stack method to build-up
the EGFs. Group velocities were then automatically computed using
a resampling method to select robust measurements. We tested the
stability of the group-velocity measurements as a function of the
amount of stacked data and the frequency. Less data are required at
high frequency than at low frequency, and it is necessary to stack
2 yr of hum to obtain robust measurements in the entire frequency
band of 0.004–0.032 Hz. We further show that it is necessary to
process data in separate frequency bands, as 0.004–0.016 Hz and
0.016–0.032 Hz, to obtain reliable group-velocity measurements in
the entire frequency band. Comparing the PCPWS (Schimmel et al.
2011) and CCS (Bensen et al. 2007) methods, we show that the
PCPWS method enables faster convergence towards higher signal-
to-noise ratio EGFs.

We selected 149 good-quality broad-band stations from the global
networks and obtained 6797 group-velocity curves that corre-
sponded to paths between 500 and 13000 km. We only rejected
measurements along 20 per cent of the paths for which no conver-
gence toward the EGF could be achieved. The selected EGFs show
high signal-to-noise ratios, and both Rayleigh waves and body waves
can be clearly identified.

The group velocities were regionalized and then inverted, to ob-
tain the 3-D S-wave velocity model using a simulated annealing
method in which the number and shape of the splines that describe
the model vary. This new S-wave velocity tomographic model is
well correlated with models derived from earthquakes in most ar-
eas, although in India, the Dharwar craton is shallower than in other
published models.

This model will be improved in the future by using more stations,
and in particular, ocean-bottom stations. Earthquakes and ambient
noise provide independent data sets and path coverage, and therefore
are complementary to investigate the structure of the Earth.
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sional inference in the geosciences, Phil. Trans. R. Soc. Lond., A.: Math.
Phys. Eng. Sci., 371(1984), 20110547, doi:10.1098/rsta.2011.0547.

Schimmel, M., 1999. Phase cross-correlations: design, comparisons, and
applications, Bull. seism. Soc. Am., 89(5), 1366–1378.

Schimmel, M. & Gallart, J., 2005. The inverse S-transform in filters with
time-frequency localization, IEEE Trans. Signal Process., 53(11), 4417–
4422.

Schimmel, M. & Gallart, J., 2007. Frequency-dependent phase coherence
for noise suppression in seismic array data, J. geophys. Res., 112, B04303,
doi:10.1029/2006JB004680.

Schimmel, M. & Paulssen, H., 1997. Noise reduction and detection of weak,
coherent signals through phase-weighted stacks, Geophys. J. Int., 130(2),
497–505.

Schimmel, M., Stutzmann, E. & Gallart, J., 2011. Using instantaneous phase
coherence for signal extraction from ambient noise data at a local to a
global scale, Geophys. J. Int., 184(1), 494–506.

Schimmel, M., Stutzmann, E. & Ventosa, S., 2015. Robust group velocity
measurements, IEEE, submitted.

Sebai, A., Stutzmann, E., Montagner, J.-P., Sicilia, D. & Beucler, E., 2006.
Anisotropic structure of the African upper mantle from Rayleigh and
Love wave tomography, Phys. Earth planet. Inter., 155(1), 48–62.

Shapiro, N.M., Campillo, M., Stehly, L. & Ritzwoller, M.H., 2005. High-
resolution surface-wave tomography from ambient seismic noise, Science,
307(5715), 1615–1618.

Snieder, R., 2004. Extracting the Green’s function from the correlation of
coda waves: a derivation based on stationary phase, Phys. Rev. E, 69(4),
doi:10.1103/PhysRevE.69.046610.

Stockwell, R.G., Mansinha, L. & Lowe, R., 1996. Localization of the com-
plex spectrum: the S transform, IEEE Trans. Signal Process., 44(4), 998–
1001.

Stutzmann, E., Ardhuin, F., Schimmel, M., Mangeney, A. & Patau, G., 2012.
Modelling long-term seismic noise in various environments, Geophys. J.
Int., 191(2), 707–722.

Tanimoto, T., 2005. The oceanic excitation hypothesis for the continuous
oscillations of the earth, Geophys. J. Int., 160(1), 276–288.

Tarantola, A. & Nercessian, A., 1984. Three-dimensional inversion without
blocks, Geophys. J. Int., 76(2), 299–306.

Tarantola, A. & Valette, B., 1982. Generalized nonlinear inverse problems
solved using the least squares criterion, Rev. Geophys., 20(2), 219–232.

Traer, J. & Gerstoft, P., 2014. A unified theory of microseisms and hum, J.
geophys. Res., 119(4), 3317–3339.

Wapenaar, K., 2004. Retrieving the elastodynamic Green’s function of an
arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett.,
93(25), doi:10.1103/PhysRevLett.93.254301.

Weaver, R.L. & Lobkis, O.I., 2006. Diffuse fields in ultrasonics and seis-
mology, Geophysics, 71(4), SI5–SI9.

Webb, S.C., 2007. The Earth’s hum is driven by ocean waves over the
continental shelves, Nature, 445(7129), 754–756.

A P P E N D I X A : S Y N T H E T I C T E S T S A N D
T O M O G R A P H I C M O D E L C O M PA R I S O N

To estimate the resolution of our tomographic model, we performed
several synthetic tests. We also compared our model with three
published models and quantified the differences.

A1 Synthetic tests

In this section, we present the synthetic tests. As the inversion is
separated into two steps, we checked the lateral and vertical reso-
lutions separately. The lateral resolution is estimated with synthetic
tests of group-velocity regionalisation. The vertical resolution is
tested with synthetic tests of group-velocity inversion versus depth,
to retrieve the S-wave velocity.

We used checkerboard tests to investigate the model lateral res-
olution. We constructed synthetic group-velocity maps for the real
path coverage. The inversion was performed with the same cor-
relation length (800 km) and a-priori errors, as for the real data.
The resolution is considered good when the checkerboard image is
reconstructed. Figs A1(a) and (b) show that anomalies of 2000 km
width are well recovered for latitudes between 72◦N and 54◦S. At
higher latitudes, the resolution decreases due to the absence of seis-
mic stations. Figs A1(c) and (d) show that anomalies of 3000 km
width are well recovered between 81◦N and 54◦S.

We then tested the local group-velocity inversion versus depth to
retrieve the S-wave velocity model. Figs A1(e)–(h) show four syn-
thetic tests with two delta-like anomalies separated by 100 km. We
compare the case of two positive (e) and two negative (f) anoma-
lies and one positive and one negative anomaly (g) and (h). We
observe that the two anomalies are recovered and well separated in
all four cases. The inversion can resolve two anomalies separated
by 100 km in the depth range of 50–300 km with a smoothing ef-
fect that increases with depth. This vertical smoothing effect is due
partly to the smoothing parameters of the inversion, and mostly to
the different sensitivities of the surface waves with depth.

A2 Tomographic model comparison

We compared our HUM2 model with three published S-wave ve-
locity models. We selected the SV velocity model of Nishida et al.
(2009), which is the only other tomographic model derived solely
from hum data. It is here called NMK2009. They computed cross-
correlations between 54 stations and stacked 17 yr of correlograms.
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Figure A1. Synthetic tests to estimate the horizontal (a)–(d) and vertical (e)–(h) resolution. Synthetic group-velocity model with positive and negative
anomalies of 2000 km (a) and 3000 km (c) width. Inverted group-velocity map (b) and (d) corresponding to maps (a) and (b), respectively. Anomalies of
2000 km width are well recovered except at high latitude. (e)–(h) show synthetic (blue) and inverted (red) S-wave velocity models. The two delta-like anomalies
are separated by 90 km, and they are well recovered.

Their model is derived from 906 R1 trains and 777 R2 trains of
Rayleigh wave phase velocity measurements in the period band of
120–375 s. The two other models are obtained from earthquake
data. One model is the global upper-mantle SV velocity model of
Debayle & Ricard (2012), here called DR2012, which is derived
from 375 000 Rayleigh waveform seismograms. They used funda-
mental and higher Rayleigh mode phase velocity measurements.
The other model is from Auer et al. (2014), here called SAVANI,
which is a radially anisotropic S velocity model based on published
data sets of surface wave phase velocities and body-wave travel-
times.

We computed the Pearson’s correlation between the four models
as a function of depth as follows:

r =
∑

i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2

√∑
i (yi − ȳ)2

(A1)

where xi and yi are velocity model perturbations at location (latitude,
longitude) i for model A and B, respectively, and x̄ and ȳ are
the means of xi and yi. Fig. A2 shows the correlation between all
four of these models. The correlation between our HUM2 model
and DR2012 and SAVANI is high, at about 0.90 between 80 and

Figure A2. Pearson correlations between our model (HUM2), and the three
published models: NMK2009 from Nishida et al. (2009), DR2012 from
Debayle & Ricard (2012) and SAVANI from Auer et al. (2014), as a function
of depth.
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Figure A3. S-wave velocity as a function of depth at four locations: Afar, the West Africa craton, the Dharwad craton and Cape Verde. Five models are plotted
for comparison: our model (HUM2) as reference with uncertainties, and the three published models: NMK2009 from Nishida et al. (2009) in light blue,
DR2012 from Debayle & Ricard (2012) in green and SAVANI from Auer et al. (2014) in dark blue. The PREM Vs model is plotted in black.

200 km in depth. Correlation between HUM2 and NMK2009 is
much lower, at 0.6, but similar to the correlation between SAVANI
and NMK2009, which is 0.7. This might be due to the lower reso-
lution of NMK2009, which is derived from a smaller data set than
the other models.

Below 80 km and above 220 km, correlations between all of the
models decrease. At shallow depths, this might be due to crustal
correction that might be differently implemented. At large depth
(deeper than 200 km), models HUM2, SAVANI and DR2012 have
different sensitivities due to the different seismic phases measured
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(fundamental mode, higher modes and/or body waves), which can
explain the decrease in the correlation. Our model is only derived
from the fundamental mode Rayleigh waves, and it progressively
loses resolution below 200 km in depth.

Fig. A3 shows a comparison of S-wave velocity models as a
function of depth for two cratons and two hotspots.

A P P E N D I X B : S - WAV E V E L O C I T Y
T R A N S - D I M E N S I O NA L I N V E R S I O N

This appendix describes the group-velocity inversion to retrieve the
local S-wave velocity model.

For a given S-wave velocity model, synthetic group velocities,
Usyn(T), as a function of periods, T, are computed following Saito
(1988). The sphericity of the Earth and the frequency dependence
of the S-wave velocity model are taken into account using the Earth
flattening transformation (Biswas & Knopoff 1970) and eq. (3) of
Dziewonski & Anderson (1981), respectively.

The S-wave velocity model to be retrieved is represented as a
weighted sum of B-spline basis functions defined as follows:

VS(z) = V 0
S (z) +

M−1∑
m=0

Vm Nm,2(z), (B1)

where Nm, 2(z) is the mth non-uniform quadratic B-spline basis func-
tion (De Boor 1978), M is the number of B-spline basis functions,
Vm are weight coefficients, V 0

S (z) is the a priori reference Earth
model that is composed of the crust2.0 model (Laske et al. 2013)
and the PREM with smoothed 220 km discontinuity. Whenever
the crust2.0 is thinner than the PREM crust, the PREM upper-
most mantle structure is extrapolated up to the bottom of the new
crust.

The trans-dimensional inversion is a composition of two nested
loops: for a given spline basis {Nm, 2}, the inner loop computes
the optimum model weight coefficients (Vm) and the outer loop
determines the optimum spline basis.

The inner loop uses the simulated annealing optimization algo-
rithm (Press 2007, chap. 10.9) to minimize the misfit function:

χ 2
d = 1

N

N∑
n=1

[
Uobs(Tn) − Usyn(Tn)

]2
/σ 2

d (Tn), (B2)

where Uobs and Usyn are the measured and synthetic group velocities,
Tn is the period, σ d is the measurement error and N is the number
of periods.

The outer loop uses the golden section search in one dimension
(Press 2007, chapter 10.1) to minimize the expression (χ 2

d + χ 2
m)/2

as a function of the number of splines M, where χ2
d is the result of

inner-loop minimization of eq. (B2) and χ 2
m is the model variance

quantity defined as:

χ 2
m = 1

M

M−1∑
m=0

σ 2
m/
2, (B3)

where 
 is the a-priori model variance that acts as a regularisation
parameter. We compute σ 2

m as the diagonal elements of the model
covariance matrix Cm, as estimated by (Menke 2012):

Cm = G−gCd G−gT , (B4)

Figure B1. (a) Misfit χ2
d and model variance χ2

m as functions of spline basis.
The integer values of parameter M correspond to the number of splines in
the bases and Mopt is the selected spline basis. (b) and (c) Spline bases for
M = 2.3 and M = 3.7, respectively.

where Cd is the data covariance matrix with diagonal elements
σ 2

d (Tn), G is the partial derivative matrix of the group veloc-
ity Usyn(Tn) with respect to the spline weight Vm, that is, Gmn =
∂Usyn(Tn)/∂Vm and ‘-g’ indicates the generalized inverse.

The number of splines M in the outer loop minimization can be
considered as continuous. This depends on the number of knots P
as follows: M = P − 3. P is calculated as the depth range of the
model divided by the variable interval between the knots. We start
from equidistant knots, the normalized depths of which are called
x, and convert these through the transformation y(x) = bx + (1 −
b)xa. The new knot depths are now condensed to the top of the
model. Figs B1(b) and (c) show two examples of B-spline bases
for M = 2.3 and M = 3.7, respectively, and their corresponding
knots (blue points). The functions χ 2

d and χ 2
m as a function of the

number of splines M are shown in Fig. B1(a), by the green and
blue lines, respectively. This illustrates a trade-off between fitting
the dispersion curves and model uncertainty. The best compromise
between these is for the optimal number of splines M = Mopt. It
was found by trial and error that optimal values for the parameters
a and b can be assigned arbitrarily in the intervals of 3 < a < 4,
0.2 < b < 0.4.
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