Testing a proposed “second continent” beneath eastern China using geoneutrino measurements

Ondřej Šrámek
Department of Geophysics, Charles University
ondrej.sramek@gmail.com, http://geo.mff.cuni.cz/~sramek

Collaboration with: Bedřich Roskovec, Bill McDonough

Presented on 14 November 2018 at “Geodynamický seminář” of Department of Geophysics, Charles University, Prague
Testing a proposed "second continent" beneath eastern China using geoneutrino measurements

Bedřich Roskovec, Ondřej Sramek, William F. McDonough

(Submitted on 25 Oct 2018)

Models that envisage successful subduction channel transport of upper crustal materials below 300 km depth, past a critical phase transition in buoyant crustal lithologies, are capable of accumulating and assembling these materials into so-called "second continents" that are gravitationally stabilized at the base of the Transition Zone, at some 600 to 700 km depth. Global scale, Pacific-type subduction (ocean–ocean and ocean–continent convergence), which lead to super continent assembly, were hypothesized to produce second continents that scale to about the size of Australia, with continental upper crustal concentration levels of radiogenic power. Seismological techniques are incapable of imaging these second continents because of their negligible difference in seismic wave velocities with the surrounding mantle. We can image the geoneutrino flux linked to the radioactive decays in these second continents with land and/or ocean–based detectors. We present predictions of the geoneutrino flux of second continents, assuming different scaled models and we discuss the potential of current and future neutrino experiments to discover or constrain second continents. The power emissions from second continents were proposed to be drivers of super continental cycles. Thus, testing models for the existence of second continents will place constraints on mantle and plate dynamics when using land and ocean–based geoneutrino detectors deployed at strategic locations.

Subjects: Geophysics (physics.geo-ph)
Cite as: arXiv:1810.10914 [physics.geo-ph]
(or arXiv:1810.10914v1 [physics.geo-ph] for this version)
What is “(first) continent”?

Bimodal topography

Hypsometric curve + Isostasy:
Thick Continental Crust ~40 km
(Thin Oceanic Crust ~7 km)

Diverse lithologies
Compositionally heterogeneous
Vertical compositional gradient (layers)
Continental growth

Methods to construct crustal growth models:
1. From distribution of rocks of different ages presently preserved on Earth
2. From distribution of rocks of different model ages (when derived from the mantle)
3. Using arguments about volume of crust over time even if no longer preserved (thermal arguments; argon isotope systematics; trace element ratios of mafic basalts; Hf isotopes in zircons)

Continental growth

- By ~3 Ga the volume of continental crust was 65–70% of its present day volume
- Reduction in growth rates of continental crust
- Little evidence for reduction continental crust generation rates
- Interpreted as increase in continental crust destruction rates
- Related to onset of plate tectonics at around 3 Ga (?)

Continental destruction

One indication of significant recycling of lower Continental Crust back into mantle

- Based on Sm–Eu–Gd analyses of upper/middle/lower CC samples
- Lower CC enriched in Eu
- Upper CC strongly depleted in Eu
- Overall CC depleted in Eu relative to mantle-derived basalts (its building blocks)
- Interpreted as recycling of lower CC back into the mantle

At least 2.9 crustal masses have been lost to the mantle via lower crustal recycling

Total continental crust mass created over age of the Earth could be $4 \times$ present-day mass.

Tang et al. 2015 doi:10.1130/G36641.1
Continental destruction

Sediment subduction and subduction erosion of Upper Continental Crust

Mechanism of subduction erosion in Subduction zone

Sediment subduction

Weathering

Subsidence

Upper crust

Oceanic crust

Mantle lithosphere

Subduction erosion

Erosion by seamounts and ridges

Sea mount

Horst Graben

Bucket model

Hydrofracture model

Azuma et al. 2017 doi:10.1016/j.gsf.2016.08.001
What happens to subducted material?

esp. Upper Crustal granitic rocks (TTG = tonalite-trondhjemite-granodiorite)

Density ρ

Seismic speeds v_P, v_S

Kawai et al. 2013 doi:10.1016/j.gsf.2012.08.003
“Second continent” hypothesis

- Material of Upper Continental Crust is entrained and subducted in oceanic plate subduction setting, and accumulates at the base of the Transition Zone, where it forms a Second Continent.

Kawai et al. 2009 doi:10.1016/j.gr.2009.05.012
Maruyama et al. 2011 doi:10.5026/jgeography.120.115
Kawai et al. 2013 doi:10.1016/j.gsf.2012.08.003
Testing Second Continent

- As such Second Continent is made of Upper Crustal material, which is enriched in K, Th, U by a factor of up to ~1000 relative to ambient mantle, it would be:
 - a bright geoneutrino emitter \rightarrow we could “see” it
 - strongly internally heated \rightarrow consequences for dynamics

Construct models of Earth’s geoneutrino emission with and without SC, ask whether the difference is detectable with current and future neutrino experiments.

Background “classical Earth” geoneutrinos + SC geoneutrinos
Background geoneutrino emission model

- Model of crustal geometry and material density from CRUST1.0 model (Laske et al.)
- Material density in the mantle from PREM model (Dziewonski & Anderson 1981)
- Assume negligible Th, U in the core
- Total amount of Th, U in Silicate Earth from estimate by Arevalo et al. 2009, 20±4 TW radiogenic power)

Mass fractions of Th and U

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper CC + sediments</td>
<td>$(10.5\pm10)\times10^{-6}$</td>
<td>$(2.7\pm21)\times10^{-6}$</td>
</tr>
<tr>
<td>Middle CC</td>
<td>$(6.5\pm8)\times10^{-6}$</td>
<td>$(1.3\pm31)\times10^{-6}$</td>
</tr>
<tr>
<td>Lower CC</td>
<td>$(1.2\pm30)\times10^{-6}$</td>
<td>$(0.2\pm30)\times10^{-6}$</td>
</tr>
<tr>
<td>OC sediments</td>
<td>$(8.10\pm7%)\times10^{-6}$</td>
<td>$(1.73\pm5%)\times10^{-6}$</td>
</tr>
<tr>
<td>OC crust</td>
<td>$(0.21\pm30)\times10^{-6}$</td>
<td>$(0.07\pm30)\times10^{-6}$</td>
</tr>
<tr>
<td>CLM</td>
<td>$150^{\pm77}_{97}\times10^{-9}$</td>
<td>$33^{\pm49}_{20}\times10^{-9}$</td>
</tr>
<tr>
<td>Depleted Mantle</td>
<td>$(21.9\pm20)\times10^{-9}$</td>
<td>$(8.0\pm20)\times10^{-9}$</td>
</tr>
<tr>
<td>Enriched Mantle</td>
<td>$147^{\pm74}_{57}\times10^{-9}$</td>
<td>$30^{\pm24}_{18}\times10^{-9}$</td>
</tr>
<tr>
<td>Bulk Silicate Earth</td>
<td>$(80\pm15)\times10^{-9}$</td>
<td>$(20\pm20)\times10^{-9}$</td>
</tr>
</tbody>
</table>
Global SC model 1a (crazy...)

- Let us assume an old SC which has accumulated+dispersed over >1 Gyr → formed a global layer between 600–700 km depth, with UCC (= Upper Continental Crust) abundances of Th, U

- Such model predicts additional 107 TW of radiogenic power and 93 TNU of geoneutrino signal.

- This is ruled out by heat flow measurements (46±3 TW) and by current geoneutrino measurements:

![Graph showing geoneutrino measurements over time]

<table>
<thead>
<tr>
<th>Year</th>
<th>KamLAND</th>
<th>Borexino</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>30.7±7.5</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td>43.5±12.1</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KamLAND and Borexino measurements shown against TNU units.
Global SC model 1b (upper limit)

- Global layer at 600–700 km depth as in previous model
- Th, U concentration such that all mantle content of Th, U of a 20 TW (radiogenic) Earth is concentrated in this SC
- This results in a 1.6 TNU difference relative to a “classical” case
- This is too small a difference to be resolved by geoneutrino measurements (smaller than experimental uncertainties)
- Vertical distribution not resolvable by geoneutrinos … reference mantle signal ~8.1 TNU; putting all emitters at CMB gives ~6.2 TNU; all emitter in SC give ~9.7 TNU
Regional SC model 2: SE Asia

- A young SC (few 100 My), created by Pacific plate subduction under Asia, location under SE China follows from subduction geometry, 2000 km × 2000 km laterally (~Australia-sized), UCC concentrations of Th, U

SC geoneutrino signal

![Map and graph showing geoneutrino flux with markers for KamLAND, JUNO, Jinping locations, and data points for measured and predicted fluxes with uncertainties.](image)
If such a SC described in Model Ib exists, current and upcom-
ditional signal is significantly smaller than experimental un-
certainties of all existing mea-
su SC for the constrained Model Ib is 1.6 TNU over the classical mantle flux and this ad-
amount of radionuclides in the Earth as we did in Model Ib. The additional signal from
out by current measurements listed in Tab. 3. Therefore, it is necessary to constrain the
is about 93 TNU, which leads to an extremely high geoneutrino flux that is already ruled
predicts a total mantle flux to be about 8.1 TNU [Ref. 2015] and BOREXINO [Ref. 2016], which is valid

ding over the SC volume. The abundances of Th and U are taken to be the di

in abundances for an assumed SC and Depleted Mantle.

Assuming SC Model II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KamLAND</td>
<td>36.4°N 137.3°E</td>
<td>34.8^{+4.2}_{-4.0}</td>
<td>39.1^{+4.2}_{-4.0}</td>
<td>30.7 ± 7.5</td>
<td>16%</td>
</tr>
<tr>
<td>JUNO</td>
<td>22.1°N 112.5°E</td>
<td>38.9^{+4.8}_{-4.5}</td>
<td>54.2^{+4.8}_{-4.5}</td>
<td>-</td>
<td>6%</td>
</tr>
<tr>
<td>Borexino</td>
<td>42.5°N 13.6°E</td>
<td>41.4^{+5.1}_{-4.8}</td>
<td>-</td>
<td>43.5^{+12.1}_{-10.7}</td>
<td>15%</td>
</tr>
<tr>
<td>ANDES</td>
<td>30.2°S 69.8°W</td>
<td>41.7^{+4.8}_{-4.7}</td>
<td>45.8^{+4.8}_{-4.7}</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>SNO+</td>
<td>46.5°N 81.2°W</td>
<td>44.2^{+5.3}_{-5.1}</td>
<td>-</td>
<td>-</td>
<td>9%</td>
</tr>
<tr>
<td>Jinping</td>
<td>28.2°N 101.7°E</td>
<td>58.5^{+7.4}_{-7.2}</td>
<td>75.5^{+7.4}_{-7.2}</td>
<td>-</td>
<td>4%</td>
</tr>
<tr>
<td>OBD I</td>
<td>44.0°S 47.0°W</td>
<td>15.5^{+2.4}_{-2.6}</td>
<td>38.6^{+2.4}_{-2.6}</td>
<td>-</td>
<td>10%</td>
</tr>
<tr>
<td>OBD II</td>
<td>44.0°S 19.0°W</td>
<td>12.7^{+2.4}_{-2.6}</td>
<td>17.8^{+2.4}_{-2.6}</td>
<td>-</td>
<td>10%</td>
</tr>
</tbody>
</table>

\(^a\) Assuming SC Model II \(^b\) Assuming SC Model III
Quantifying the discovery potential

\[\chi^2 = \sum_{i=1,2,3} \left(\frac{S_{wSC}^i - S_{woSC}^i}{\sqrt{(\sigma_m^i)^2 + (\sigma_p^i)^2}} \right)^2 = \sum_{i=1,2,3} \left(\frac{S_{SC}^i}{\sqrt{(\sigma_m^i)^2 + (\sigma_p^i)^2}} \right)^2 \]

Expected measurement uncertainties \quad Uncorrelated part of prediction uncertainties

\[\sqrt{\chi^2} = 5.0 \quad \text{``Model 2'' SC can be discovered at 5.0\sigma level} \]
Regional SC model 3: South Atlantic

- A young SC (few 100 My), created by Pacific plate subduction below South America, located under South Atlantic, same geometry and composition as in model 2.
If such a SC described in Model Ib exists, current and upcom-
ditional signal is significantly smaller than experimental uncertainties of all existing mea-
surments (cf., Tab. 3).

...current measurements listed in Tab. 3. Therefore, it is necessary to constrain the
is about 93 TNU, which leads to an extremely high geoneutrino flux that is already ruled
position. The additional geoneutrino flux for Model Ia, for an experiment at sea level,
predicts a total mantle flux to be about 8.1 TNU [\(\text{TNU}\)]
in abundances for an assumed SC and Depleted Mantle.

The combined model of Depleted and Enriched mantle, with abundances from Tab. 1,
the additional contribution of the SC can be calculated using Eq. 1 and integrat-
over the SC volume. The abundances of Th and U are taken to be the di
a second continent model. We include latest flux measurements of the KamLAND [\(\text{TNU}\)]
does not include a contribution from a second continent as well as expected flux assuming specific
future relative uncertainty of the measurement. We present geoneutrino flux prediction which
estimated future relative measurement uncertainty. The uncertainty for existing exper-
ments was obtained based on the latest measurement assuming increased statistics. The

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KamLAND</td>
<td>36.4°N 137.3°E</td>
<td>34.8±4.2(^a)</td>
<td>39.1±4.2(^a)</td>
<td>30.7 ± 7.5</td>
<td>16%</td>
</tr>
<tr>
<td>JUNO</td>
<td>22.1°N 112.5°E</td>
<td>38.9±4.8(^a)</td>
<td>54.2±4.8(^a)</td>
<td>-</td>
<td>6%</td>
</tr>
<tr>
<td>Borexino</td>
<td>42.5°N 13.6°E</td>
<td>41.4±5.1(^b)</td>
<td>-</td>
<td>43.5±12.1(^b)</td>
<td>15%</td>
</tr>
<tr>
<td>ANDES</td>
<td>30.2°S 69.8°W</td>
<td>41.7±4.8(^b)</td>
<td>45.8±4.8(^b)</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>SNO+</td>
<td>46.5°N 81.2°W</td>
<td>44.2±5.3(^a)</td>
<td>-</td>
<td>-</td>
<td>9%</td>
</tr>
<tr>
<td>Jinping</td>
<td>28.2°N 101.7°E</td>
<td>58.5±7.4(^a)</td>
<td>75.5±7.4(^a)</td>
<td>-</td>
<td>4%</td>
</tr>
<tr>
<td>OBD I</td>
<td>44.0°S 47.0°W</td>
<td>15.5±2.4(^b)</td>
<td>38.6±2.4(^b)</td>
<td>-</td>
<td>10%</td>
</tr>
<tr>
<td>OBD II</td>
<td>44.0°S 19.0°W</td>
<td>12.7±2.4(^b)</td>
<td>17.8±2.4(^b)</td>
<td>-</td>
<td>10%</td>
</tr>
</tbody>
</table>

\(^a\) Assuming SC Model II \(^b\) Assuming SC Model III

SC discovery potential is 6.2\(\sigma\)
Dynamics of Second Continent?

Viscous gravity current, sandwiched between viscous layers

Strongly internally heated → Thermal instabilities?

Safonova et al 2015 doi:10.1016/j.gsf.2014.11.004

Ichikawa et al 2013 doi:10.1016/j.gr.2013.02.001
Summary

- Second Continent hypothesis is testable by geoneutrino measurements ... either discover a SC or put upper limit on its \((\text{mass} \times \text{enrichment} / \text{distance}^2)\)

- SE China location will benefit from three land-based detectors

- Ocean-bottom detector required for ocean-located SC (e.g., South Atlantic)

- Curious dynamical implications to explore
Neutrino Geoscience 2019 Prague

• Neutrino geophysics, esp. geoneutrino themed meeting
• Probably on 21–23 October 2019 at Novotného Lávka
• Hoping to attract folks in the field, both neutrino physicists and geoscientists

• Past meetings:
 Neutrino Sciences 2005, Neutrino Geophysics, Honolulu, Hawaii, 14–16 December 2005
 Neutrino Geoscience 2008 at SNOLAB, Sudbury, Ontario, Canada, 17–19 September 2008
 Neutrino Geoscience 2010, Gran Sasso National Laboratory, Italy, 6–8 October 2010
 Neutrino Geoscience 2013, Takayama, Japan, 21–23 March 2013
 Neutrino Research and Thermal Evolution of the Earth, Tohoku University, Sendai, Japan, 25–27 October 2016

• Working with AMCA and MFF UK

• Need to raise some funds… [Advice??]
Neutrino tomography of Earth

Andrea Donini, Sergio Palomares-Ruiz and Jordi Salvado

Cosmic-ray interactions with the atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale. The Earth is not a fully transparent medium for neutrinos with energies above a few TeV, as the neutrino-nucleon cross-section is large enough to make the absorption probability non-negligible. Since absorption depends on energy and distance travelled, studying the distribution of the TeV atmospheric neutrinos passing through the Earth offers an opportunity to infer its density profile. This has never been done, however, due to the lack of relevant data. Here we perform a neutrino-based tomography of the Earth using actual data—one-year of through-going muon atmospheric neutrino data collected by the IceCube telescope. Using only weak interactions, in a way that is completely independent of gravitational measurements, we are able to determine the mass of the Earth and its core, its moment of inertia, and to establish that the core is denser than the mantle. Our results demonstrate the feasibility of this approach to study the Earth’s internal structure, which is complementary to traditional geophysics methods. Neutrino tomography could become more competitive as soon as more statistics is available, provided that the sources of systematic uncertainties are fully under control.

\[M_\odot = (6.0^{+1.6}_{-1.3}) \times 10^{24} \text{ kg} \]
Thank you.