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Abstract

We have developed a new approach for the computation of temporal responses of viscoelastic Earth models
to a surface load. Mathematically it is a reformulation of evolutional partial differential equations governing
the infinitesimal response of the pre-stressed viscoelastic continuum into the form of an initial-value problem
for ordinary differential equations. In the first part of the thesis we derive the initial-value formulation
in full detail. We begin from the field partial differential equations, continue with the spherical harmonic
decomposition and the spatial semi-discretization via the method of lines and discuss routines appropriate
for numerical solution to resulting stiff ordinary differential equations. We also touch our older initial-value
formulation based on an alternative technique of discretization. We concentrate on models with spherically
symmetric distribution of physical parameters, although a set of differential equations for the case of axisym-
metric viscosity is derived, too. In the second part we collect our publications on the initial-value approach.
We focus on characteristic features of responses of realistic models with complex viscosity profiles. In par-
ticular, the influences of elastic compressibility, of the thickness of the lithosphere, of the nature of internal
mantle boundaries and of the structure of the asthenosphere are studied. The comparison of results obtained
by the initial-value and normal-mode approaches is conducted for simplified as well as for realistic models.
We demonstrate the gravitational instability of a compressible homogeneous sphere. The initial-value ap-
proach offers the alternative fundamentals for the numerical modelling of the viscoelastic responses. Besides
its applicability to arbitrarily stratified spherical Earth models, it provides the possibility of generalization
for models with 2-D and 3-D viscosity distribution. Due to the efficiency of numerical procedures applicable
to the forward problem, it can eventually extend the throughput of the inverse modelling.
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Introduction

The relevance of the viscoelastic approximation of the Earth responses emerges in the context of
processes operating on the transient temporal scales, between the domains of purely elastic and
viscous modelling. Modelling of the uplift of regions deglaciated during the late Pleistocene epoch is
the leading application. The forward problem of the postglacial rebound consists of the evaluation
of response functions to the unit load and the convolution of the responses with models of glacial-
oceanic loading in time and space. It is a long-standing tradition to evade the time dependence of
the responses by reformulation of the problem in the Laplace domain and to express the Laplace
spectra of the responses in terms of normal modes (Peltier 1974; Wu & Peltier 1982). However, the
messy structure of the Laplace spectra of spherical compressible models with realistic distribution
of physical parameters poses a serious obstacle for the inverse transformation of the responses back
into the time domain (Han & Wahr 1995; Fang & Hager 1995). For this reason, the application of
the normal-mode approach to these compressible Earth models becomes rather ineffective, if not
impossible.

In the presented thesis we provide a review of our formulations of the initial-value approach
to the modelling of viscoelastic responses of the Earth, from the original version by Hanyk et
al. (1995, 1996) through the integro-differential formulation by Hanyk et al. (1998) up to recently
discovered and here first published formulation based on the method of lines. We collect a system of
field partial differential equations (PDEs) governing the global response of a spherically symmetric,
gravitating, compressible Earth model to surface loading. With the elastic constitutive relation
considered first, the field PDEs are converted into a system of ordinary differential equations
(ODEs) with respect to the radius by means of the spherical harmonic analysis and the technique
of scalar representation of both vectors and second-order tensors. Then we switch to the constitutive
relation of the Maxwell viscoelasticity which introduces the time evolution into the system. We
derive a linear first-order system of PDEs with respect to both time and the radius for the Maxwell
solid; PDEs for the standard linear solid and for the axisymmetric viscosity distribution are found
too. Next we discretize the derived PDEs for the Maxwell solid in the spatial dimension and obtain
a system of ODEs with respect to time, suitable for efficient numerical implementation of stiff
integrators. The Rosenbrock and semi-implicit extrapolating stiff integrators are discussed and
adapted for the band-diagonal structure of the matrix of the system. Numerical properties of the
new formulation are demonstrated on some examples. In the second half of the thesis we incorporate
four publications which apply the initial-value approach to a large family of viscoelastic Earth
models. We focus on characteristic features of responses of realistic models with complex viscosity
profiles. In particular, the influence of elastic compressibility, the thickness of the lithosphere, the
nature of internal mantle boundaries and the viscosity structure of the asthenosphere are studied.
The comparison of results obtained by the both approaches is conducted for simplified as well as
for realistic models. Finally the gravitational instability of a compressible homogeneous sphere is
examined (Hanyk et al. 1999). In appendices of the thesis a survey of features of scalar spherical
harmonics is given, scalar representation of scalar, vector and second-order tensor fields subjected to
differential operators is derived and some perhaps useful excerpts of Fortran routines are attached.
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1 Initial-Value Approach via the Method of Lines

1.1 Field Partial Differential Equations

We consider a gravitating, compressible, non-rotating continuum initially in hydrostatic equilibri-
um. It is conventional to decompose total fields, such as the stress tensor and the gravitational
potential, into initial and incremental parts. The incremental fields are employed for description
of infinitesimal, quasi-static, gravitational-viscoelastic perturbations of the initial fields. Physical
quantities and field equations given below conform to the standard form of gravitational viscoelas-
todynamics (Peltier 1974), also referred to as the material-local form of the linearized field theory
(Wolf 1997).

The initial state of the continuum is described, in terms of the initial (Cauchy) stress tensor
τ 0, the initial gravitational potential ϕ0, the initial density distribution %0 and the forcing term
f0, by the momentum and Poisson equations, respectively,

∇ · τ 0 + f0 = 0 , (1)
∇2ϕ0 − 4πG%0 = 0 , (2)

where G is the Newton gravitational constant. Boundary conditions required at the surface and all
internal boundaries are the continuity of the normal initial stress, [n · τ 0]+− = 0, of the gravitational
potential, [ϕ0]+− = 0, and of the normal component of its gradient, [n · ∇ϕ0]+− = 0, where n is the
outward unit normal with respect to the boundary; moreover, the tangential stress should vanish at
liquid boundaries and at the surface, n · τ 0 = (n · τ 0 · n)n. The premise of the hydrostatic initial
stress requires no deviatoric stresses, τ 0 = −p0I, with p0 the mechanical pressure and I the unit
diagonal tensor. We take the force f0 equal to the gravity force per unit volume, f0 = −ρ0∇ϕ0.
In the case of the spherically symmetric density, %0(r), where r is the radius, all initial fields also
become spherically symmetric. Introducing the gravitational acceleration g0(r) by the relation
g0er = ∇ϕ0, eqs (1)–(2) reduce to

p′0 + %0g0 = 0 , (3)
g′0 + 2g0/r − 4πG%0 = 0 , (4)

where the prime ′ denotes differentiation with respect to r.

The incremental fields include the displacement u, the incremental (Cauchy) stress tensor τ , the
incremental gravitational potential ϕ1 and the incremental density %1. Note that the incremental
potential ϕ1 under the presence of a surface load is due to both the gravitational forcing of the
load and the internal mass redistribution of the model. For incremental fields the adoption of the
concept of Lagrangian or Eulerian formulations of a field becomes necessary, the former relating the
current value of a field at the material point to the initial position of that point, the latter relating
the field to the current, local position. Leaving derivation of the following equations for specialized
monographs (e.g., Wolf 1997), we state that if τ is in Lagrangian description and ϕ1 and %1 are in
Eulerian description, then, within this rather conventional casting, the incremental field equations
for infinitesimal, quasi-static perturbations, i.e., the momentum and Poisson equations, and the
constitutive relation of Maxwell viscoelasticity will take the form as follows:

∇ · τ + f = 0 , f = −%0∇ϕ1 +∇ · (%0u)g0er −∇(%0g0er · u) , (5)
∇ · (∇ϕ1 + 4πG%0u) = 0 , (6)
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τ̇ = τ̇E − ξ (τ −K∇ · uI) , (7)
τE = λ∇ · uI + µ[∇u + (∇u)T ] (8)

with λ and µ the elastic Lamé parameters, K = λ+ 2
3µ the bulk modulus, η the dynamic viscosity,

ξ = µ/η and τE the elastic part of the stress tensor. The dots above quantities denote differentiation
with respect to time t. The internal boundary conditions for the incremental fields require continuity
of the displacement, the incremental stress, the incremental gravitational potential and its gradient,
[u]+− = 0, [τ ]+− = 0, [ϕ1]+− = 0 and [∇ϕ1]+− = 0, and zero tangential stress at liquid boundaries,
n · τ = (n · τ · n)n. Under the presence of the load prescribed by the interface density γL, the
surface boundary conditions for the incremental stress and gradient of the incremental gravitational
potential balance the applied load, [n · τ ]+− = −g0γLn and [n · (∇ϕ1 + 4πGρ0u)]+− = −4πGγL.

1.2 Spherical Harmonic Decomposition

Let er, eϑ and eϕ be the unit basis vectors of the spherical coordinates r, ϑ and ϕ. We introduce
the scalar spherical harmonics Ynm(ϑ, ϕ),

Ynm(ϑ, ϕ) = (−1)mNnmPmn (cosϑ)eimϕ , Nn =

√
2n+ 1

4π
, (9)

where Pmn (cosϑ) are the associated Legendre functions and Nnm the norm factors, and the vector
spherical harmonics S(−1)

nm , S(1)
nm and S(0)

nm,

S(−1)
nm (ϑ, ϕ) = Ynmer , (10)

∇ΩYnm ≡ S(1)
nm(ϑ, ϕ) = ∂ϑYnmeϑ + (sinϑ)−1∂ϕYnmeϕ , (11)

er ×∇ΩYnm ≡ S(0)
nm(ϑ, ϕ) = −(sinϑ)−1∂ϕYnmeϑ + ∂ϑYnmeϕ . (12)

We can write the following expansions of the scalar and vector functions u, ϕ1, T r ≡ er · τ and
TEr ≡ er · τE ,

u =
∑
nm[Unm(r)S(−1)

nm + Vnm(r)S(1)
nm +Wnm(r)S(0)

nm] , (13)

∇ · u =
∑
nm Xnm(r)Ynm , (14)

ϕ1 =
∑
nm Fnm(r)Ynm , (15)

T r =
∑
nm[Trr,nm(r)S(−1)

nm + Trϑ,nm(r)S(1)
nm + Trϕ,nm(r)S(0)

nm] , (16)

TEr =
∑
nm[TErr,nm(r)S(−1)

nm + TErϑ,nm(r)S(1)
nm + TErϕ,nm(r)S(0)

nm] . (17)

Expansions of ∇ · τE , f and ∇ · (∇ϕ1 + 4πG%0u) and expressions for Xnm, TErr,nm, TErϑ,nm, TErϕ,nm
and an auxiliary variable Qnm are derived in the thesis.

1.3 Ordinary Differential Equations for the SNREI Earth

The spherically symmetric, non-rotating, elastic, isotropic (SNREI) Earth model is considered in
this paragraph. We introduce vector yEnm,

yEnm(r) =
(
Unm, Vnm, T

E
rr,nm, T

E
rϑ,nm, Fnm, Qnm,Wnm, T

E
rϕ,nm

)T
, (18)

with the 8 elements collected to allow trivial decomposition into the spheroidal (elements 1..6) and
toroidal (elements 7..8) parts; the spheroidal elements are ordered in accord with Peltier (1974).
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After application of (13)–(17) in the field PDEs (5)–(6) with (8) and by substitution of yEnm into
both the decomposed PDEs and the expressions for TErr,nm, TErϑ,nm, TErϕ,nm and Qnm, as is shown
in the thesis, we arrive at a linear first-order system of ODEs with respect to r,

yE ′nm(r) = An(r)yEnm(r) , (19)

with matrix An(r) equal to

An =



−2λ
rβ

Nλ

rβ

1
β

0 0 0 0 0

−1
r

1
r

0
1
µ

0 0 0 0

4γ
r2
− 4%0g0

r
−2Nγ

r2
+
N%0g0

r
−4µ
rβ

N

r
− (n+ 1)%0

r
%0 0 0

−2γ
r2

+
%0g0

r

Nγ + (N − 2)µ
r2

− λ

rβ
−3
r

%0

r
0 0 0

−4πG%0 0 0 0 −n+ 1
r

1 0 0

−4πG
(n+ 1)%0

r
4πG

N%0

r
0 0 0

n− 1
r

0 0

0 0 0 0 0 0
1
r

1
µ

0 0 0 0 0 0
(N − 2)µ

r2
−3
r



, (20)

and β = λ+ 2µ, γ = µ(3λ+ 2µ)/β = 3µK/β and N = n(n+ 1). In the case of material incom-
pressibility, K →∞, the following expressions should be considered instead:

1/β → 0 , λ/β → 1 , and γ → 3µ . (21)

System (19) is decoupled with respect to both degree n and order m, and for each n and m consists
of two independent systems, one with 6× 6 matrix (a1..6,1..6), connecting the spheroidal coefficients
of u and τE , and another with 2×2 matrix (a7..8,7..8), containing the toroidal coefficients. Moreover,
matrix An(r) is independent of m. The spherical harmonic representation of the surface boundary
conditions for the point mass load, γL(ϑ) =

∑
nΓnPn0(cosϑ) (Farrell 1972), reads

y3(a)
y4(a)
y6(a)
y8(a)

 =
1
Nn


−g0Γn

0
−4πGΓn

0

 , Γn =
2n+ 1
4πa2

, (22)

where a is the radius of the Earth and the norm factors Nn come from (9).

1.4 Partial Differential Equations for the Maxwell Solid

In this paragraph we reformulate the problem of gravitational viscoelastodynamics purely in the
time domain. As a starting point we recall the constitutive relation of the Maxwell rheology,

τ̇ = τ̇E − ξ (τ −K∇ · uI) , (23)

with ξ = µ/η, and the field PDEs in the form
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∇ · τ̇E + ḟ = ∇ ·
[
ξ (τ −K∇ · uI)

]
, (24)

∇ · (∇ϕ1 + 4πG%0u) = 0 . (25)

We consider the spatial distribution of the parameters and field variables as follows:

%0 = %0(r) , λ = λ(r) , µ = µ(r) , K = K(r) , g0 = g0(r) , η = η(r) , ξ = ξ(r) , (26)

u = u(r, ϑ, ϕ) , ϕ1 = ϕ1(r, ϑ, ϕ) , τ = τ (r, ϑ, ϕ) . (27)

The solution vector ynm(t, r) can be constructed from the coefficients of the spherical harmonic
expansions of u, ϕ1 and τ similarly as yEnm in (18),

ynm(t, r) = (Unm, Vnm, Trr,nm, Trϑ,nm, Fnm, Qnm,Wnm, Trϕ,nm)T . (28)

Vectors ynm and yEnm differ in the stress components, related in accordance with (23),

Ṫ r = Ṫ
E

r − ξ (T r −K∇ · u er) . (29)

The steps to be undertaken are similar to those outlined in the previous paragraph; a resulting
system of PDEs is to be expressed in terms of ynm instead of yEnm. We arrive at a linear first-order
system of PDEs with respect to time and the radius for the solution vector ynm,

ẏ′nm(t, r)−An(r)ẏnm(t, r) = ξ



a13(y3 −KX)
a24y4

−y′3 + b33(y3 −KX) + b34y4 +
∑
kc3kyk

−y′4 + b43(y3 −KX) + b44y4 +
∑
kc4kyk −KX/r

0
0
a78y8

−y′8 + b88y8


, (30)

which can be rewritten into the form

ẏ′nm(t, r)−An(r)ẏnm(t, r) = ξ(r)
[
Dn(r)y′nm(t, r) +En(r)ynm(t, r)

]
. (31)

Matrix An(r) keeps the form of (20) and the explicit expressions of matrices Dn(r) and En(r)
follow from (30) after substitution of expressions for coefficients X, aik, bik and cik, which can be
found in the thesis,

Dn =



−K
β

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
4γ
3r

0 −1 0 0 0 0 0

−2γ
3r

0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1



, (32)
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En =



−2K
rβ

NK

rβ

1
β

0 0 0 0 0

0 0 0
1
µ

0 0 0 0

8γ
3r2
− 4%0g0

r
−4Nγ

3r2
+
N%0g0

r
−4µ
rβ

N

r
− (n+ 1)%0

r
%0 0 0

− 4γ
3r2

+
%0g0

r

2Nγ
3r2

− λ

rβ
−3
r

%0

r
0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1
µ

0 0 0 0 0 0 0 −3
r



. (33)

Similarly as in the elastic case, system (31) is separated with respect to both n and m and matrices
An, Dn and En remain independent of m and consist of 6×6 spheroidal and 2×2 toroidal blocks.

In order to treat PDEs (31) as an initial-value problem, one needs to specify the initial condition,
e.g., the value of ynm(t, r) for t = 0. Here we consider the point mass load with the Heaviside
dependence in time, i.e., the point mass load applied at the surface, r = a, in the time instant t = 0
and effecting continuously for t > 0. The Maxwell Earth responds elastically in the time instant
of the load application, thus, the appropriate initial condition is ynm(0, r) = yEnm(r). The surface
boundary conditions for this load keep the form of (22) uniformly for t ≥ 0. Note that with the
surface boundary conditions due to the point mass load, the spheroidal part of the system only needs
to be solved. At internal solid boundaries the continuity of all elements of ynm(t, r) is required,
and at liquid boundaries the boundary conditions are according to, e.g., Wu & Peltier (1982). At
r = 0, finite values of ynm are expected. To find the initial condition for a spherically symmetric
model with arbitrary distribution of density and elastic parameters, ODEs (19) must be solved
numerically. However, for the homogeneous Earth model the solutions are known analytically and
these analytical solutions can be employed in numerical integration for arbitrarily stratified models
as the starting solutions. Hence, we rewrite here explicitly three independent solutions to (19) for
a compressible model (λ finite) with constant values of %0, λ and µ (Wu & Peltier 1982),

y1 =



−NCjn(kr) + krj′n(kr)
k2r

− (1 + C)jn(kr) + Ckrj′n(kr)
k2r

λjn(kr) + 2µ
[
NC

kr

(
jn(kr)
kr

− j′n(kr)
)
− j′′n(kr)

]
−µCjn(kr) + 2µ

[
1 + C

kr

(
jn(kr)
kr

− j′n(kr)
)
− Cj′′n(kr)

]
3ςjn(kr)

k2

3ς(1− nC)(1 + n)jn(kr)
k2r



, y3 =



nrn−1

rn−1

2µn(n− 1)rn−2

2µ(n− 1)rn−2

−nςrn

−2n(n− 1)ςrn−1



, (34)

where ς = 4
3πG%0, N = n(n+ 1) and jn, j′n and j′′n are the spherical Bessel functions with the

first and second derivatives, respectively. The subscripts n and m of ynm have been suppressed.
Solution vector y2 preserves the form of y1 with k replaced by q and C by D where
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2k2 =
4ς%0

β
+

√(
4ς%0

β

)2

+
4Nς2%2

0

µβ
, 2q2 =

4ς%0

β
−

√(
4ς%0

β

)2

+
4Nς2%2

0

µβ
, (35)

C = − ς%0

µk2
, D = − ς%0

µq2
, (36)

with β = λ+ 2µ.

1.5 Partial Differential Equations for the Standard Linear Solid

In order to demonstrate the applicability of the initial-value approach to other viscoelastic rheolo-
gies, we derive a system of PDEs for the spherically symmetric Earth responding like the standard
linear solid. We consider the constitutive relation in the form (Peltier 1982)

τ̇ +
µ1 + µ2

η

(
τ − 1

3
τ̄ I

)
= λ ˙̄e I + 2µ1 ė+

2µ1µ2

η

(
e− 1

3
ē I

)
, (37)

where λ and µ1 are the elastic Lamé parameters, µ2 and η are the shear modulus and the viscosity
associated with the Kelvin-Voight element and τ̄ and ē are the first invariants of the stress and
strain tensors, respectively. We invoke the auxiliary parameters ξ1 = (µ1 + µ2)/η and ξ2 = 2µ1µ2/η
with the physical units s−1 and Pa s−1, respectively. Repeating the derivation similar to that made
for the Maxwell solid, we obtain PDEs with respect to time and the radius for the solution vector
ynm with the rheology of the standard linear solid in the form essentially identical with (31),

ẏ′nm(t, r)−An(r)ẏnm(t, r) = ξ1(r)
[
Dn(r)y′nm(t, r) +En(r)ynm(t, r)

]
(38)

+ ξ2(r)
[
F n(r)y′nm(t, r) +Gn(r)ynm(t, r)

]
.

Matrices An, Dn and En (with µ replaced by µ1) are given by (20), (32) and (33), respectively,
and explicit expressions for matrices F n and Gn follow from what is given in the thesis.

1.6 Partial Differential Equations for the Axisymmetric Viscoelastic Earth

The derivation of PDEs (31) for the responses of the spherically symmetric, Maxwell Earth model
to a surface load can be generalized to conform with the axially symmetric (2-D) distribution of
viscosity; on the contrary, we must enforce the restrictive assumption of the axial geometry of
the load with identical axes of symmetry of both the viscosity and the load. Then, the spatial
dependence of the viscoelastic response of this system is axisymmetric as well. We consider the
following spatial distribution of the parameters and the field variables,

%0 = %0(r) , λ = λ(r) , µ = µ(r) , K = K(r) , g0 = g0(r) , η = η(r, ϑ) , ξ = ξ(r, ϑ) , (39)

u = u(r, ϑ) , ϕ1 = ϕ1(r, ϑ) , τ = τ (r, ϑ) . (40)

We introduce the scalar and vector zonal spherical harmonics, Yn and S(−1)
n , S(1)

n , S(0)
n , respectively,

and the derivatives Zn of Yn, all the functions of the colatitude ϑ only,

Yn(ϑ) = Yn0 , Zn(ϑ) = ∂ϑYn0 , (41)

S(−1)
n (ϑ) = Yner , S(1)

n (ϑ) = Zneϑ , S(0)
n (ϑ) = Zneϕ . (42)
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The spherical harmonic expansions (13), (15) and (16) of u, ϕ1, T r and of the stress vector
T ϑ ≡ eϑ · τ are reduced to

u(r, ϑ) =
∑
n[Un(r)Yner + Vn(r)Zneϑ +Wn(r)Zneϕ] , (43)

ϕ1(r, ϑ) =
∑
n Fn(r)Yn , (44)

T r(r, ϑ) =
∑
n[Trr,n(r)Yner + Trϑ,n(r)Zneϑ + Trϕ,n(r)Zneϕ] , (45)

T ϑ(r, ϑ) =
∑
n[Tϑr,n(r)Yner + Tϑϑ,n(r)Zneϑ + Tϑϕ,n(r)Zneϕ] , (46)

analogically for the elastic parts of the stress vectors, TEr ≡ er · τE and TEϑ ≡ eϑ · τE . The relations
between the stress vectors and the corresponding elastic parts follow from the Maxwell constitutive
relation (23),

Ṫ r = Ṫ
E

r − ξ(r, ϑ) (T r −K∇ · u er) , (47)

Ṫ ϑ = Ṫ
E

ϑ − ξ(r, ϑ) (T ϑ −K∇ · u eϑ) . (48)

The solution vector yn(t, r) for the case of the 2-D viscosity contains 11 elements,

yn(t, r) =
(
Un, Vn, Trr,n, Trϑ,n, Fn, Qn,Wn, Trϕ,n, T̄ϑr,n, T̄ϑϑ,n, T̄ϑϕ,n

)T
, (49)

with the last three elements closely related to the components of T ϑ. Vector yEn (r) is defined
analogically. We denote 〈a;Bn′〉Y Y,n, 〈a;Bn′〉ZY,n, 〈a;Bn′〉Y Z,n and 〈a;Bn′〉ZZ,n the coefficients of
the product a(r, ϑ)b(r, ϑ), where a(r, ϑ) is a prescribed function and b(r, ϑ) is a function known by
coefficients of its expansions in terms of either Yn or Zn sinϑ,

a(r, ϑ)
∑
nBn(r)Yn(ϑ) =

∑
n〈a;Bn′〉Y Y,n(r)Yn(ϑ) ,

a(r, ϑ)
∑
nBn(r)Zn(ϑ) sinϑ =

∑
n〈a;Bn′〉ZY,n(r)Yn(ϑ) ,

a(r, ϑ)
∑
nBn(r)Yn(ϑ) =

∑
n〈a;Bn′〉Y Z,n(r)Zn(ϑ) sinϑ ,

a(r, ϑ)
∑
nBn(r)Zn(ϑ) sinϑ =

∑
n〈a;Bn′〉ZZ,n(r)Zn(ϑ) sinϑ .

(50)

These coefficients can be evaluated by efficient numerical procedures. In the thesis a linear first-
order system of PDEs with respect to time and the radius for the solution vector yn is derived in
the form of generalized PDEs (30),

ẏ′1..8,n −Anẏ1..8,n =



a13,n〈ξ; y3,n′−KXn′〉Y Y,n
a24,n〈ξ; y4,n′〉ZZ,n
−〈ξ; y′3,n′〉Y Y,n + b33,n〈ξ; y3,n′−KXn′〉Y Y,n + b34,n〈ξ; y4,n′〉ZZ,n

+ 〈ξ;
∑
kc3k,n′yk,n′〉Y Y,n + 〈ζ/r; y9,n′〉ZY,n

−〈ξ; y′4,n′〉ZZ,n + b43,n〈ξ; y3,n′−KXn′〉Y Y,n + b44,n〈ξ; y4,n′〉ZZ,n
+ 〈ξ;

∑
kc4k,n′yk,n′−KXn′/r〉ZZ,n + 〈ζ/r; y10,n′−KXn′〉Y Z,n

0

0

a78,n〈ξ; y8,n′〉ZZ,n
−〈ξ; y′8,n′〉ZZ,n + b88,n〈ξ; y8,n′〉ZZ,n + 〈ζ/r; y11,n′〉Y Z,n



, (51)

ẏ9..11,n − ẏE9..11,n =


−〈ξ; y9,n′〉ZZ,n
−〈ξ; y10,n′−KXn′〉Y Y,n
−〈ξ; y11,n′〉Y Y,n

 . (52)



Viscoelastic Response of the Earth: Initial-Value Approach 9

It is supplemented by the three band-diagonal systems of linear algebraic equations for yE9,n, yE10,n

and yE11,n,

t+n−2 y
E
9,n−2 + t0ny

E
9,n + t−n+2 y

E
9,n+2 = µ

[
y′2,n + (y1,n − y2,n)/r

]
, (53)

s+
n−2y

E
10,n−2 + s0

ny
E
10,n + s−n+2y

E
10,n+2 = (54)

= s+
n−2 [λXn−2 + 2µ/r (y1,n−2 − (n− 2)(n− 1)y2,n−2)] + s0

n [λXn + 2µ/r (y1,n − n(n+ 1)y2,n)]

+ s−n+2 [λXn+2 + 2µ/r (y1,n+2 − (n+ 2)(n+ 3)y2,n+2)]− 2µ/r
[
z+
n−2y2,n−2 + z0

ny2,n + z−n+2y2,n+2

]
,

s+
n−2y

E
11,n−2 + s0

ny
E
11,n + s−n+2y

E
11,n+2 = (55)

= −µ/r
[
s+
n−2(n− 2)(n− 1)y7,n−2 + s0

nn(n+ 1)y7,n + s−n+2(n+ 2)(n+ 3)y7,n+2

]
− 2µ/r

[
z+
n−2y7,n−2 + z0

ny7,n + z−n+2y7,n+2

]
.

This is a differential-algebraic system of 11 PDEs and 3 algebraic equations for each degree consi-
dered; coupling among systems of close degrees is maintained through both the r.h.s. of the PDEs
and the band-diagonal shape of the algebraic equations.

1.7 Method of Lines. Step 1: Discretization in Space

It is known from the normal-mode approach that the response of the Maxwell compressible Earth
can be characterized by the exponential-like development in time and by the spatial distribution
which can be expressed in terms of the spherical Bessel functions. In other words, the behaviour of
y(t, r) (subscripts nm are suppressed once again) is considerably different in the directions of each
independent variable. For this kind of PDEs, methods based on semi-discretization are of a great
benefit. Here we discuss the semi-discretizing method referred to as the method of lines (MOL,
e.g., Schiesser 1991).

Semi-discretizing methods for solution to the time- and spatially-dependent PDEs are based
on decomposition of the process of discretization into two steps: discretization in space and dis-
cretization in time. Either of these steps leads first to intermediate ODEs, and second to algebraic
equations. The actual sequence of the steps determines whether the intermediate ODEs form an
initial-value (IV) problem or a boundary-value (BV) problem. The intent of the two-step discretiza-
tion is to allow for utilization of specialized techniques designed for solution to the intermediate
ODEs. These techniques accomplish the second, often trickier, or at least too routine, step of the
process of solution. In order to present a compact numerical formulation of the IV/MOL approach,
we discretize PDEs (31) in the spatial dimension using the second-order finite-difference (FD) for-
mulas, although FD formulas of higher orders could be employed in a similar manner. On the
arbitrarily spaced grid, x0 = b < x1 < . . . < xJ = a, we can write the second-order FD formulas for
the first derivative of f(x) in the general form,

f ′0 ≈ β0f0 + γ0f1 + α0f2 , (56)
f ′j ≈ αjfj−1 + βjfj + γjfj+1 , j = 1, 2, . . . , J − 1 , (57)
f ′J ≈ γJfJ−2 + αJfJ−1 + βJfJ , (58)

where fj ≡ f(xj), j = 0, . . . , J , and αj , βj and γj are the weights dependent on locations of the
grid points. A numerical routine can be used for the evaluation of the weights (Fornberg 1996).

Let us consider PDEs (31) in an interior point xj . With FD formulas (56)–(58), the term
ẏ′ is approximated by αjẏj−1 + βjẏj + γjẏj+1, similarly Dy′ ≈Dj(αjyj−1 + βjyj + γjyj+1), etc.
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It becomes apparent that PDEs (31) discretized with respect to r can be expressed in the form of
ODEs for the solution vector y(t),

P ẏ(t) = Qy(t) + q . (59)

Vector y(t) consists of 8× (J + 1) elements,

y(t) =
(

y0 , y1 , . . . , yJ
)
, (60)

where each block represents one 8-element vector yj ≡ y(t, rj), j = 0, . . . , J . Matrix P is band-
diagonal with constant coefficients and made from 8× 8 blocks. It can be schematically sketched
in the form of J + 1 block-rows and the same number of block-columns as follows:

P =



β0I −A0 γ0I α0I 0

α1I β1I −A1 γ1I

α2I β2I −A2 γ2I

. . . . . . . . .

αJ−1I βJ−1I −AJ−1 γJ−1I

0 γJI αJI βJI −AJ



, (61)

where I is the diagonal matrix and Aj ≡ A(rj), j = 0, . . . , J . Focussing the attention to the
specific, i.e., diagonal shape of the two thinly framed blocks, α0I and γJI, these blocks can be
eliminated by subtraction of the appropriately multiplied adjacent block-rows, i.e., those with γ1I
and αJ−1I, respectively. MatrixQ is band-diagonal, too, and can be sketched in a similar manner,

Q =



β0D0 +E0 γ0D0 α0D0 0

α1D1 β1D1 +E1 γ1D1

α2D2 β2D2 +E2 γ2D2

. . . . . . . . .

αJ−1DJ−1 βJ−1DJ−1 +EJ−1 γJ−1DJ−1

0 γJDJ αJDJ βJDJ +EJ



, (62)

where (sic)Dj ≡ ξ(rj)D(rj) andEj ≡ ξ(rj)E(rj), j = 0, . . . , J . The elimination of the off-diagonal
blocks is only feasible if all corresponding elements of the adjacent blocks are mutually proportional.
This has been the case of the diagonally-shaped blocks, but it might not be the case of the blocks
α0D0 and γJDJ versus γ1D1 and αJ−1DJ−1. However, a setting of D0 = D1 and DJ = DJ−1

seems to be a satisfactory approximation. The r.h.s. vector q has the same block structure as
y(t) in (60); an explicit expression of q depends on imposed boundary conditions and is discussed
in the thesis. Note that the spheroidal and toroidal parts of (59) remain decoupled and that the
spheroidal part only needs to be solved when the boundary conditions (22) are considered.
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1.8 Method of Lines. Step 2: Integration in Time

It is a general feature of MOL that the intermediate ODEs possess a high degree of numerical
stiffness. Several classes of higher-order methods for integrating stiff ODEs (referred to as the stiff
integrators) have been proposed. We describe generalizations of the Runge-Kutta method, namely
the Rosenbrock methods (e.g., Press et al. 1996); a generalization of the Bulirsch-Stoer methods,
also called the semi-implicit extrapolation methods, is described in the thesis. A particular reason
for the choice of these integrators is the lower memory consumption than in the case of the multistep
methods (based on backward differentiation formulas), what can become prohibitive in 2-D and
3-D modelling. Let us consider the ODEs

ẏ = f(t,y) , y(t0) = y0 . (63)

The general scheme of the Runge-Kutta methods for integrating (63) is

y(t0 + h) = y0 +
s∑
i=1

ciki , ki = hf

(
y0 +

i−1∑
j=1

αijkj

)
, i = 1, . . . , s , (64)

with h the stepsize and ci and αij constants of a particular member of the Runge-Kutta family. In
the Rosenbrock methods vectors ki are solutions to s linear algebraic equations

(I − γhf ′) · ki = hf

(
y0 +

i−1∑
j=1

αijkj

)
+ hf ′ ·

i−1∑
j=1

γijkj , i = 1, . . . , s , (65)

where f ′ ≡ ∂f/∂y denotes the Jacobian matrix and the coefficients ci, γ, αij and γij are constants of
a particular member of the Rosenbrock family. The algorithm for the automatic stepsize adjustment
in the Rosenbrock methods based on the embedded Runge-Kutta-Fehlberg schemes is implemented
in Press et al. (1996).

ODEs (59) can be cast into (63) with f = P−1(Qy + q) and f ′ = P−1Q. In this case it is
advisable to rewrite the Rosenbrock scheme (65) in the form of

(P − γhQ) · ki = h

[
Q

(
y0 +

i−1∑
j=1

αijkj

)
+ q

]
+ hQ ·

i−1∑
j=1

γijkj , i = 1, . . . , s , (66)

where the band-diagonal matrices appear on the both sides. We see that at each time step, one
algebraic system with the matrix P − γhQ must be solved repeatedly for several different r.h.s.
Matrices P and Q are constant and given by (61) and (62), respectively, vector q depends on
imposed boundary conditions. It is a crucial property of this algebraic system that P − γhQ is
a band-diagonal matrix and that band-diagonal solvers may be applied. Numerical characteristics
(both processing time and required memory) thus become linear functions of the number of spatial
grid points. Solvers to algebraic band-diagonal equations are available anywhere (e.g., LAPACK

in http://www.netlib.org, or bandec & banbks accompanied with the routine banmul for matrix-
vector multiplication on the r.h.s. by Press et al. 1996). The block structure of the diagonal band
of P − γhQ allures to employ solvers which would exploit this feature. An appropriate solver to
these systems with block-diagonal matrices, based on Gaussian elimination, can be also found in
Press et al. (1996) in the context of solving BV problems of ODEs by relaxation methods.
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Figure 1: Time evolution of the surface Love numbers hn, ln and kn, n = 2, 6 and 15, of the homogeneous
incompressible model evaluated by the IV/MOL approach. One symbol represents one time step made by the
Rosenbrock stiff integrator. The responses have been calculated with various density of the spatial discretization:
symbols 4 denote values obtained with 11 equidistant spatial grid points (!), + pertain to 101 grid points and × to
1001 grid points (J = 10, 100 and 1000, respectively). The equilibrium state is reached with less than 20 time steps;
with 101 grid points, recent Pentium processors generate 20 time steps per second.

1.9 Numerical Implementation

In order to validate the new formulation and to appraise the potential of the new code, we illustrate
the IV/MOL formulation by some output of the numerical modelling. Our current implementation
targets on the homogeneous, spherically symmetric, Maxwell viscoelastic Earth models, represented
by the usual average Earth model (Wu & Peltier 1982). The code solves the spheroidal part of
ODEs (59) with constant matrices P , Q and vector q. Spatial grid points may be distributed
arbitrarily, r0 = b < r1 < . . . < rJ = a, with a the radius of the model and b the radius of the elastic
“core”, underlying the viscoelastic “mantle”. Boundary conditions at r = a have been imposed on
yJ(t) = y(t, a) in accord with (22). ODEs (59) have been solved by the Rosenbrock stiff integrator
adapted for solution to systems with band-diagonal matrices. In Fig. 1 we demonstrate the time
evolution of the surface values of the Love numbers hn, ln and kn, n = 2, 6 and 15, for the first
106 yr after the onset of the Heaviside (in time) point mass load at the surface. The surface Love
numbers are related to the 1st, 2nd and 5th elements of yJ(t) by the definition (Farrell 1972)
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Figure 2: Time evolution of the physical components of the discretized solution vector y(t) of the homogeneous
incompressible model from the elastic response at t = 0 up to t = 106 yr. The direction of the progress in time is
depicted by the arrows; timing of the particular time instants can be revealed by comparison with the surface values
given in Fig. 1. Spatial dimension of 6371 km has been discretized by 101 grid points. Vertical labelling is relative
and has been suppressed.

 yJ,1
yJ,2
yJ,5

 =
Φn
Nn

 hn/g0

ln/g0

−kn

 , Φn =
4πGaΓn
2n+ 1

, Nn =

√
2n+ 1

4π
, Γn =

2n+ 1
4πa2

, (67)

with Φn the coefficients of the spherical harmonic expansion of the surface potential of the point
mass load and Nn the norm factors of the spherical harmonics, cf. (9). The long-time values of the
surface Love numbers accurately fit the isostatic limits known analytically (Wu & Peltier 1982),

lim
t→∞

hn(t) = −2n+ 1
3

, lim
t→∞

kn(t) = −1 . (68)

Symbols 4, + and × represent the time instants chosen automatically by the Rosenbrock stiff
integrator; each time instant is depicted. We have employed 11, 101 and 1001 equally spaced grid
points in the spatial dimension (i.e., J = 10, 100 and 1000, respectively). Adaptive stepsize control
works satisfactorily: the state of the isostatic equilibrium has been reached within 20 time steps,
and the time instant of 106 yr within 30 time steps. The speed of the integration is governed by the
number of spatial grid points. As an example we can say that the Pentium/350 processor generates
20 time steps per second with 101 spatial grid points. Let us recall that both processing time and
required memory are linear functions of the number of spatial grid points. In Fig. 2 we monitor
the depth dependence of y(t). The time evolution of selected components of y(t) has been plotted
in the “one time step—one curve” manner.
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2 Publications on the Initial-Value Approach

2.1 Initial-Value Approach via the Method of Rothe

Our older formulation of the initial-value approach is not based on the method of lines but on
an alternative semi-discretizing method, referred to as the method of Rothe (MOR, e.g., Rektorys
1982). The characteristic feature of MOR is that the discretization od PDEs in time is performed
first. Although MOR does not seem to be a particularly effective method for numerical solution to
differential systems with a higher degree of stiffness, results presented in our previous publications
and collected in the second part of the thesis have been computed by a method equivalent to
the application of MOR to PDEs (30)/(31). Let us consider the Euler first-order explicit FD
formula ḟ(ti) ≡ ḟ i ≈ (f i+1 − f i)/∆ti, where ∆ti ≡ ti+1 − ti. Applying this FD formula to the time
derivatives in PDEs (30), we obtain the boundary-value problem for yi+1

n , introduced by Hanyk et
al. (1996),

(yi+1
n )′ = Anyi+1

n + qin , (69)

where

qin = qi−1
n



1

1

1− ξ∆ti

1− ξ∆ti

0

0

1

1− ξ∆ti



+ ξ∆ti



1
β

(yi3 −KXi)

1
µ
yi4

−4γ
r2
yi1 +

2Nγ
r2

yi2 +
4γ
3r
Xi

2γ
r2
yi1 −

Nγ + (N − 2)µ
r2

yi2 −
2γ
3r
Xi

0

0
1
µ
yi8

− (N − 2)µ
r2

yi7



. (70)

If we consider the implicit FD formula ḟ i+1 ≈ (f i+1 − f i)/∆ti, we will obtain from PDEs (31) at
the time level t = ti+1,

(yi+1
n )′ = Anyi+1

n + qi+1
n , (71)

qi+1
n = qin + ξ∆ti

[
(DnAn +En)yi+1

n +Dnqi+1
n

]
. (72)

This system also follows from the discretized integro-differential system by Hanyk et al. (1998),

y′n(t, r) = An(r)yn(t, r) + qn(t, r) , (73)

qn(t, r) =
∫ t

0

ξ
[
Q̃n(r)yn(t′, r) + ˜̃Qn(r)qn(t′, r)

]
dt′ , (74)

as is shown in the thesis.

These formulations of the IV approach have been applied to compressible Earth models with
complex viscosity profiles. We have demonstrated that realistic elastically compressible models
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generate an infinite number of modes and the width of such “continuous spectrum” may cover
several orders of magnitude in the Laplace domain for complicated viscosity stratification. From
our numerical solutions, we have directed our attention on the influences of elastic compressibility,
thickness of the lithosphere, the nature of the internal mantle boundaries with density jumps
and the viscosity structure near the interface between the lower and upper mantle. There is
a great difference between the responses of compressible and incompressible models mainly for
shorter wavelengths. We have studied the viscoelastic responses to the lithospheric thickness in
the presence of a low-viscosity asthenosphere for various types of viscosity profiles and found that
there are differences in the responses at short wavelengths for viscosity profiles with sharp low-
viscosity zones. The sensitivity of the viscoelastic response to the nature of the internal boundaries
with density jumps and viscosity jumps near the 670 km boundary are weaker but they are still
noteworthy for low degrees. We have concluded that the normal-mode approach is best suited
for simple layered models, long wavelengths and timescales greater than several thousand years,
while the initial-value approach is indispensable in treating short-timescale problems with sharp
low-viscosity zones in the upper mantle and viscosity stratification in the lower mantle.

2.2 Secular Gravitational Instability of a Compressible Viscoelastic Sphere

We have uncovered the existence of unstable modes of compressible Maxwell viscoelastic Earth
models. These modes can be shown to have origins arising from the gravitational Rayleigh-Taylor
instability of a compressible viscoelastic layer. Plag & Jüttner (1995) investigated numerically this
kind of instability for the PREM model. We have demonstrated analytically the secular instability
of a homogeneous compressible sphere. We have derived analytical expressions for the roots of the
secular determinant based on analytical solutions for the homogeneous compressible sphere in the
Laplace domain, cf. (34) and Wu & Peltier (1982), and on the asymptotic expansion of the spherical
Bessel functions. From the secular equation in the s→ 0+ limit, sin(k(s)r − nπ/2) = 0, where s is
the Laplace variable, the analytical formula for the (positive) roots of the unstable Rayleigh-Taylor
modes follows,

-1e60

-1e40

-1e20

0

1e20

1e40

1e60

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

RT1RT2RT3RT4--...

s > 0 (unstable branch)

! +1

s [10�11 s�1]

det M

Figure 3: Secular determinant as a function of the Laplace variable s (solid lines) for the compressible homogeneous
sphere. The asymptotic validity of the roots sRTm

n by (75), corresponding to the growth times of the unstable
Rayleigh-Taylor modes, is demonstrated by diamonds lying on the zero line.
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sRTm
n =

n(n+ 1)
Kη

(
r2ρς

)2[
(2m+ n)π2

]4 , (75)

with m the overtone number and ς = 4
3πG%0. Note that the incompressible sphere, K →∞, is

stable. The growth times 1/sRTm
n for low m, amounting to O(104) yr for the longest wavelength,

must be found numerically by root-finding procedures, the asymptotic formula (75) can, however,
be considered as the analytical proof of the existence of the unstable modes. We have also refined
on the previous analysis of the stable branch of the secular determinant, s < 0, by Vermeersen et
al. (1996). It can be acknowledged that the initial-value approach has contributed to the disclosure
of the secular instability of compressible spheres, the fact forgettable and sometime being forgotten
in the framework of the normal-mode approach.
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