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Abstrakt: Kompozitn§ model, kter§ bere v fivahu ruzne velk® elemen®rny zdroje,
predstavuje jeden z mozn§ich popisu seismik®ho zdroje. Poecet elemenfirnfich zdroju
s velikost] vetsf nez R je fimern§f Ri 2. Elemert®@rnf zdroje se neprekr§ivaj§ a jejich
celkov@l plocha m§ stejn§ obsahjako zlomov§ plocha hlavn$ho otresu. Rozlozerf ele-
mentfrnfich zdroju na hlavnf zlomov§ ploseje nfhodn§. Elemen%rny zdroje jsou mode-
lov@iny bud' jako konecn§ zdroje, a to konkr§tne kinematicky (radifiny sfrerff trhliny
s konstantny rychlostf, skluzov§ funkce je funkce typu rampa s n§beho/ffm casem
rovn§im dobe trh%rf)), nebo v bodovem priblfzerf. Hodnota konecn§ho skluzu na
elemenfrnfm zdroji je fimerng velikosti elemen®rnfho zdroje. Syntetick® Greenovy
funkce sepoefitaj§ metodou diskr@tnfich vinov§ich €fselv 1D vrstevnat§m prostredf v re-
lativn e rffdk® fiti bodu. Greenovry funkce v hust® fiti bodu se dost§ivajf za pouzit§
interpolace (kubick® splajny). V{se popsarf§fi kompozitn§ model je mozn§ interpreto-
vat jako kinematick§f model s nerovnhomern§im rozlozerfim skluzu a s nerovnomern§im
casemprfchodu trhlin y. Metoda byla aplikovina pri modelov@rff silnfich pohybu pudy
zpusobenfich At&nsikim zemetreselfm 1999 (Mw=5.9).
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Abstract: A composite sourcemodel, incorporating di®eren sizedsubeverts, provides
a possibledescription of complex rupture processeduring earthquakes. The number
of subeverts with characteristic dimension greater than R is proportional to Ri 2. The
subevents do not overlap with ead other, and the sum of their areasequalsto the
area of the target event (e.g. mainshock) . The subevents are distributed randomly
over the fault. Each subevent is modelled either as a nite source, using kinematic
approadch (radial rupture propagation, constart rupture velocity, boxcar slip-velocity
function, with constart rise time on the subevent) or asa point source. The nal slip
at eat subewvent is related to its characteristic dimension, using constart stress-drop
scaling. The synthetic Green's functions are calculated by the discrete-wavenumber
method in a 1D horizontally layered crustal model in a relatively coarsegrid of points
covering the fault plane. The Green's functions in a ne grid are obtained by cubic
splineinterpolation. The composite sourcemodel described above allows interpretation
in terms of a kinematic model with non-uniform "nal slip and rupture velocity spatial
distributions. The strong ground motion modelling of the 1999 Athens earthquake
(M = 5:9) was performed.
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Chapter 1

In tro duction

Accurate estimation of strong ground motion in a broad-frequencyband (0:5-
20H z) for future large earthquakesis one of the major topics of presern strong
motion seismology Synthesesof strong ground motion are basedon combination
of generation (source e®ects)and propagation of seismicwavesin Earth. The
problem is, that at high frequencies(f » 20H z) deterministic methods based
on limited knowledge of Earth's interior still fail. The problems adheren to
propagation e®ectsare quite obvious, preser crustal models are insuxcient for
sud high frequencies.The problemsadheren to sourcee®ectsare may be even
more complicated, becausethere has not beendeweloped yet universal physical
theory of faulting processes.

This thesisis particularly focusedon the modelling of nite-extent sources.
Seismicsourcesare of coursestudied in various ways. We mertion here three
main approadies: dynamic modelling, kinematic modelling and composite mod-
elling of seismicsource. The goal of dynamic modelling of seismicsourceis to
determinepoint of rupture initiation, rupture velocity and slip behavior over the
fault, from stressacting on the fault, strength of the fault and properties of ma-
terial surrounding the fault (seeKostrov and Das (1988)). One can see,that
dynamic modelling represetts very complexproblem by itself, and thereforeit is
not suitable for strong ground motions simulations. On the other hand kinematic
modelling of seismicsourcerepresens favorable choice from strong ground mo-
tion point of view. The problem of seismicsourceis reducedto speci cation of
the dislocation on a fault asa function of time and position (usually expressedn
form of represemation theorem presened by Aki and Richards (1980)). In other
words kinematic modelling of seismicsourcestarts at the point, where dynamic
modelling of seismicsourceusually results. The composite modelling of seismic
sourcerepreseis quite di®eren approad. The seismicsourceis taken asa case
of certain self-similar ertity. In other words, seismicsourceis assumedto be
composedfrom smaller seismicsources(usually called subeverts). The idea of
composite sourcemodel camefrom EGF (Empirical Green'sFunction) method,
wheretime history of mainshack is built up from aftershocks (Hartzell (1978)). In

9



10 CHAPTER 1. INTRODUCTION

this study we are goingto enhancerecert composite sourcemodelsby incorporat-
ing non-equalsizedsubewerts. Although composite modelswith non-equalsized
subeerts werealready studied from both theoretical (Boatwright (1982), Frankel
(1991)) and practical (Zenget al. (1994), Irikura and Kamae (1994), Hartzell et
al. (1999)) points of view, the number of uncertainties and uncompleteddescrip-
tions doesnot allow to usethesemodels universally. Sothat the motivation for
this study was to build up composite model, which would be simple, universal
and which would be without any contradictory assumptions.Chapter 2 provides
description of composite sourcemodel with equalsizesto showv basicproperties of
composite modelling. Then in Chapter 3, which represets the fundamertal part
of this master thesis, non-equalsized subeerts are incorporated. In Chapter 4
we outline possibleways of subeverts modelling and nally in Chapter 5 there
is showvn an exampleapplication of deweloped composite model for Athens 1999
earthquake.



Chapter 2

Subevents with equal sizes

2.1 Scaling laws

Scalinglaws betweenlarge and small earthquakeshave to be consideredor build-
ing composite sourcemodel. Set of scaling laws for sourceparameterssud as
fault area,average nal slip and scalarseismicmomert, introducedby Kanamori
and Anderson(1975) and assumingconstart stressdrop are

Lnown pim fs M ld

= K (2.1)

where L, W denote length, width of fault area, hui, f;, M,, denote average
‘nal slip, corner frequency and scalar seismic momert respectively and K is
constart. Superscripts m and s distinguish 2 di®eren earthquakes. Presen
composite models,which haveincorporated theselaws, producereasonableesults
(seelrikura and Kamae (1994), Frankel (1995), Hartzell et al. (1999)), howewer
they aren't certain for wide magnitude ranges(seeMai and Beroza(2000)). In
further study we will usethe assumptionof constart stressdrop (2.1) to simplify
derived formulas. A more generalcaseof nonconstan stressdrop can be found
in Irikura and Kamae (1994).

2.2 1i2source model

Another fundamertal assumptionof preseried composite model is f | ? fallo® of
amplitude displacemen spectra above corner frequencyf .. The shape ju(f)j of
amplitude displacemeh spectra is prescribed, following Brune (1970), as

) —deo (2.2)

f
1+ L

11



12 CHAPTER 2. SUBEVENTS WITH EQUAL SIZES

One can seethat (2.2) hasplateau for f < f, particularly
ju(f! 0)j/ M, (2.3)

The shape of amplitude accelerationspectra jiXf )j is then, derived multiplying
(2.2) by f 2,

o Mf 2
()] —— (2.4)
1+
(2.4) hasplateau for f > f, particularly
JACE 1 1)j /1 Mf2 (2.5)

2.3 Summation metho d for subevents with equal
sizes

The idea of ongoingstudy is to composetarget event from smaller events, which
meet (2.2), soastarget evert will meet(2.2), conserving(2.1).

Let's proposesomebasicassumptionsabout modelledevert (i.e. mainshak):
rupture fault is consideredto be rectangle with known length L™ and width
W™ scalarseismicmomert M[", cornerfrequencyf " and medanismare known
parameters,too. Further, we assumethat there are available seismogram=f N
subewverts, which occur within the fault of the mainshack (i.e. mainfault). These
subewerts have samemedanism as the mainshak and appropriate rectangular
subfault is assignedo ead subewvernt. Thesesubfaultsfully Tl up the mainfault.
Moreover, we assumethat all of thesesubevernts have samemomen Mg, corner
frequencyf $ and stressdrop ¢ % Thus, due to constart stressdrop scaling, all
subfaults have samelength L® and width W*S. In other words, we simply cut the
mainfault into N identical subfaults, so

Lm™wm

TSWe - N (2.6)
The stressdrop ¢ %is consideredto be samefor both mainshack and subevert,
so by combination of (2.1) with (2.6), we obtain

HMyﬂ%

= N (2.7)

Mg

One of the simplest ways how to build up the target ewvert is to sum up con-
tributions from subewverts with appropriate time shift to model nite sizeof the
mainfault, mathematically

X
-8 = -t th) (2.8)

m=1



2.3. SUMMATION METHOD FOR SUBEVENTS WITH EQUAL SIZES 13

where- 3 (t) is modelled composite seismogram; S, (t) is cortribution from m-th
subewert, t;, istime, whenthe m-th subewert is initialized. Timing of subeverts
canbe chosenin variousways, from completelyrandomt/, (seeTumarkin (1994)),
to t;, which follows prescribed rupture front spreadingover mainfault (e.g. ra-
dial rupture). - 8 (t), - S (t) could be generallytime histories of displacemen
velocity or acceleration.

2.3.1 Summation pro cess for random t],

tn this -section, we are going to study general behavior of amplitude spectra
- 8 (f) of simulated time history - 8 (t) . Firstly, we shawv its asymptotic be-
havior, following Joyner and Boore (1986). In this case,it is usefulto assume
random subevert timing, to provide analytical derivation. Transforming(2.8) to

frequencydomain, we obtain

X -
-S(f)= - (e (2.9)

m=1

It is clear that one realization of t{, and one set of - ;, (f) would not tell us
much about the generalshape of - 3 (f). Hence,we are going to study - 3 (f)
statistically to provide trustful results. The geneal shag of - 3 (f > will be
identi ed with averagecompositeamplitude spectraand will bedenoted - 3 (f) .

For the squareof averageamplitude spectra - 8 (f )_we have

A I A !
_ 8 - )(\I _ s i 2Vif tf )(\I _'S i 2vif tf
(f) = Ers. j(f)e j S(f)e . (2.10)

i=1 k=1 ’

N
Il ©

where E1.sf:::g is operator of expectation (mean value, seeLee (1960)) from
setsT and S, bar over denotescomplexconjugate, T denotessetoft], S denotes
setof - ; (f). Rearranging(2.10) we get

j=1
X h i)

+ & 24 (11 ) 7S (F)- S(f) (2.11)
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Wesupposethat - 7 (f) ;- § (f);t] andt] areindependert of ead other forj 6 Kk,
thus

= S W hon oi
SEM) = Es 15 ()

n 0N Oi
+ Er 27 i%) Eg “3()- °(f) (2.12)

As we supposedabove, t}, is randomvariable, henceit canbe described by certain
probability density function ¥qt],). We choosesimply uniform probability density

function 8
20 t <0
YAt ) = >Tl o-th - T (2.13)
"0 t,>T

where T is duration of the mainshak, which is inversely proportional to the
corner frequency of the mainshak f". From de nition of expectation E f:::g
we obtain

Z, z

T
Eff (t),)g= f () YAt dtl = % f (t),)dt], (2.14)
il 0
As we treat both t} and tjr independenly, E; becomes
© I r¢ r 2 1 Z TZ T I r r r r
Er ftf f(t) = = f ot f (t))dtdt (2.15)
T2 4 & i i
Putting (2.15) into (2.12) we get
- S Xhoon oi
-5 (f) "= Es -7(f)-7(f)
j=1
1)@ .ZTZT-l'f o n 0-
= e 20 (it)dtdt, Es - 5(F)- 5(f)  (2.16)
jkst OO
i6k
Obvious integration produces
Z 5 X h n Oi
-5(f) "= Es -7 (f)-7(f)
j=1
X Hegl o 0.
+ siné - Es - (f)- 7 (f) (2.17)
jk=1



2.3. SUMMATION METHOD FOR SUBEVENTS WITH EQUAL SIZES 15
where function sinc(x) denotes S'”Xﬂ Equation (2.17) is already suitable for
studying -  (f) whenf4 Oandf ! -1 . —

Firstly, let's propose - 8 (f) and - T (F) in (2.17) to be displacemen
spectra (jus (f)j resp. jujy (F)i ). All subeverts have samescalar seismicmo-
mert M ¢S, low-frequency part of displacemeh spectra is proportional to Mg,
hencelow-frequencyaverageof these spectra will be surely proportional to M
and approximately equal to average subevent amplitude displacemenh spectra
jus(f ' 0)j, then

n 0
uf(f)uf(f)oz jus(f 1 0)° (2.18)

lim Es
fl o n
lim Es UF(F)us(f) =jus(f 1 0) (2.19)

Forf ! 0, using(2.17), (2.18), (2.19) and limy, ¢ sinc(x) = 1, the squareof an
averageamplitude displacemen spectra is

- 5 N , X ,
us(f! 0=  jus(f! 0)°+ jus(f 1 0)j (2.20)
i=1 jk=1
j6k
rearrangingterms yields
— —p
uSs(f! 0= N+N(Nj Djus(! 0) (2.21)
and nally - -
uS(f! 0) =N jus(f! 0) (2.22)

Secondly let's propose - 5 (f) and - J-S(k) (f) in (2.17) to be acceleration
spectra (jé\® (f )j resp. jléxjs(k) (f)j ). All subevents have samescalar seismicmo-
mert M S and sameproportions, thus samecornerfrequencied :. High-frequency
part of accelerationspectra is proportional to M § (f CS)Z, hencehigh-frequencyav-
erageof thesespectra will be surely proportional to M (f 5)2 and approximately
equalto averagesubevert amplitude accelerationspectrajé°(f ! 1 )j, then

n..—.. 0 '
lim Eg nlAf(f)uAf (f)O: s (f11))2 (2.23)

lim Es U (D@ (F) = jde(f 1 1) (2.24)

Forf ! 1, using(2.17), (2.23), (2.24) and lim,,;  sinc(x) = 0, the squareof
an averageamplitude displacemen spectra is

- S
BE(F1 1) = jEE ! 1) (2.25)
j=1
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and nally - ~ p_
W@E! 1) = Nj#(@F! 1) (2.26)
From (2.22) and (2.26) it is clear that low-frequencyand high-frequencyparts
of subeverts spectra are summing up in di®eren ways. In literature (2.22) and
(2.25) has beenoften distinguished as cohere and incoheren summation. Co-
herert summation meansthat composite amplitude spectrum, composedof N
subeverts, is sumof N subewvents' amplitude spectra and incoherert summation
meansthat squareof composite amplitude spectrum, composedof N subewerts,
is sum of N squaresof subevents’ amplitude spectra. Adopting terms coher-
ert/incoherent, one can seethat coherencyand incoherencyis proved only for
limits f ' Oandf ! 1 respectively. To look at the composite spectrum

betweenthesetwo limits, we dare to assume
n 0 n 0

Es - (f)- 5 (f) %Es - (f)- 7 (f) Y%j- °(f)j’ (2.27)

wherej- °(f )j denotesaveragesubevert amplitude spectra, s%(2.17) becomes
- - ' “ 5

- S (f )ﬁ2 =j- S(f)j> N+ (N 1)sind fTT (2.28)

Averagecomposite displacemen spectrum ju® (f ) j computedfrom (2.28) s plot-

ted in Figure 2.1, for four di®eret N. We can seethat low-frequencylevels are

underestimated. Explanation is obvious. From (2.22) and (2.3) we have

wuS(@E 1 0) =Njus(f! 0)j/ NMS (2.29)
howewer for ju™ (f ! 0)j we have from (2.3) and (2.7)
ju™(f ! 0)j/ N2MS (2.30)

sothat Um0 P L) P
jum(r 0 _Po o k=" P
usr o N MTeg o N

On the other hand, we can seethat high-frequencylevelsare tted well. Expla-
nation is alsoobvious. By combining (2.1) with (2.7) we get

fs  P—
- N (2.32)

Putting (2.5) into (2.26), using (2.32), we obtain
B 1) = pﬁj@?@(f 1 1)/ pﬁlvlg(fg)z: NZMS (FM)?  (2.33)
and for jd™ (f ! 1 )j we have from (2.5) and (2.7)
BT 1) MI ()= NEMS (FT)’ (2.34)

(2.31)

sothat Am e : Cm e
M: 1) lim Ok 1 (2.35)
AS(f1 1) S
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Figure 2.1: Four displacemen amplitude spectra u® (f) for di®eren N, com-
puted using (2.28), and the requesteddisplacemen amplitude spectrum of the
mainshack ju™ (f )j, computedusing (2.2). The spectra are normalizedat f = 0
to M,. Corner frequenciessatisfy (2.1).
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2.3.2 Summation pro cess for deterministic t],

Although deterministic timing of subevents represeis quite di®eren task from
random timing, we will shaw that it givessimilar results. Let's take a radial rup-
ture as an examplecaseof deterministic timing of subevents. By radial rupture
we mean

_ 1»m]

tl’
m Vr

(2.36)

wherev; is rupture velocity, »n, is vector pointing from hypocerter of the main-
shock to the nucleation point of the m-th subevert, which is usually taken in
the certer of m-th subfault. For further discussion,it is usefulto denominate
frequenciesf, f 2 (0;f") low frequenciesf 2 (f[";fZ2) middle frequenciesand
f 2 (f3;1 ) high frequencies.Let's generally proposethat low-frequencycortri-
butions sum cohererly, high-frequencycontributions incoherertlly and middle-
frequency cortributions partly cohererly. Although we have no mathematical
proof for sudh proposition (rate of coherency/incoherencyis strongly dependen
on the total number of subeverts N and on given value of rupture velocity v;),
we will provide qualitativ e explanation. To explain coherencyat low frequencies,
we can follow an example of kinematic models of nite source. In kinematic
modelling of faulting one hasto provide coheren summation over whole desired
frequencyband. In other words, fault elemens have to be small enough, sut
that time di®erencedetweenarrivals from adjacen elemens are lessthen peri-
ods of interests. Six elemeits on the shortest wavelength is usually considered
to be sutcient to provide correct summation (seesection 4.1 for description in
more detail). Back to composite modelling, it is reasonableto agsumethat the
number of subevens alonggigand strike is same,thus equalto ~ N. Then we
can imagine that we have = N elemertis on wavelength equal to,length L™ of
the mainfault, which is inversely proportional to f. Because N is usually
greater then 5, we are corvinced that coherem summation is provided for fre-
guenciesbellow f §. We emphasizethat elemerts in kinematic modelling don't
have samemeaningas subeverts in composite modelling, but the criteria of co-
herert summation can be handled for both casesn the sameway. On the other
hand, high-frequency(f > fZ) cortributions sum incohererly. Explanation is
obvious. Time di®erencesdetweenrupture times of two adjacert subevens are
greater than periods of interest, thus t], appearsto be random variable from
high-frequencypoint of view (time shifts are too big to catch rapid changesof
subevent cortribution). Hencewe can apply results for high frequenciesderived
in previoussection(seesection2.3.1). Figure 2.2 shav sthematically exampleof
both coheren and incoherenn summation. Figure 2.2 can be interpreted in two
di®erem ways: 1) T, = Ty, ty = %tb ) showing in°uence of di®eren timing;
2) proposing self-similar function plotted at two di®eren time scales,so that
T, = 4Ty, ty = t, ) showing the fact, that lower frequency corntributions are
summedcoherenly and higher frequencycortributions are summedincohererly .
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Ta Tb

Figure 2.2: Coheren versusincoheren summationat two time windows of length
T, resp. Ty, with time di®erencegs, resp. t,. Bold line represems sum of thin
lines, which are bellow the bold line.

To summarizeresults of this section,we declarethat low-frequencycortribu-
tions of subeverts sum cohererly producing underestimatedlow-frequencypart
of composite spectra (see(2.31)). The high-frequencycortributions of subeverts
sum incohererly, producing requestedlevel of composite spectra (see (2.35)).
Middle frequenciesare mix of both coherert and incoherert energy Accurate rate
of coherency/incoherencyn middle frequenciesdependsmostly on total number
of subevents. The higher number of subeverts we have, the more coheren sum-
mation is above the corner frequencyof the mainshack. Other parametersmay
play role too (rupture velocity, changesof impulse responseof medium over the
mainfault).

2.4 Correction at low frequencies

Resultsof previoussectionshav that summationmadeby applying (2.8) produces
correct level of high-frequencypart of the composite spectra, but also produces
wrong level of low-frequency part. This problem was resohed by number of
authorsin variousways (Joyner and Boore (1986), Boatwright (1988), Irikura and
Kamae (1994), Frankel (1995), Beresnevand Atkinson (1997)). We have chosen
the method presened by Frankel (1995), becauseat seemdo be the simplestone
and it alsoincludesreasonablephysical explanation. Correct spectral level at low
frequenciess obtained by simple linear Ttering of composite spectra computed
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from (2.8). Filtering function is constructedtaking into accoun (2.31)and (2.35),
othat frequenciedellow cornerfrequencyof the mainshak have to be boosted
N -times and frequenciesabove cornerfrequencyof the subevert should remain

unchanged. At middle frequencieswe don't have any special constrairt -about

the TTter's amplitude spectrum, it should only smaothly decg from value N to
value 1. An exampleof such amplitude spectrum is
5 -
1+ =
jS(f)j=c—=s~°-.
1+

_,,I_h

(2.37)

|_.

_,,
°3

where f? is corner frequency of the subevert, f" is corner frequency of the
mainshak," is parameterdetermining shape and C is constart determinedfrom
conditions

P N (2.38)

1 (2.39)

jS(f ! 0)
jS(F 1 1))

so conbining (2.37) with (2.38) and (2.39), we get

3

1+ p_
mC—2—"~-=C ) C= N (2.40)
fl o 1+ -

3 7 fo
1+ ff_s ufmﬂ" ufmﬂ“
imC—2—°""~-=C % ) C -% =1 (2.41)
f1 1+ % fe fe
SinceC is determinedfrom (2.40), (2.41) becomes
u S 1-[“
fo = P N (2.42)
for

It is clear that " should be 1 to presene consistencywith (2.32). Howewer,
plotting (2.37) for " = 1 producesamplitude spectra, which decgs immediately
at frequencieslower than f" (seeFigure 2.3). Hence, boosting low frequency
part of spectrum, especially at frequenciesnearf ", is insutcient. To solve this
problem, we substitute f " by formal corner frequencyf X. Then (2.42) becomes

S
f&= ff)‘:ﬁ (2.43)
Now putting " = 2 or " = 3 producesf} 6 f", particularly fX > f". For-

B1a_| parameterf X cortrols the range of frequencieswhich are exactly ampli ed
N -times, that is why we useit insteadof f " in (2.37) (seeFigure 2.3). Partic-
ularly, we choose" = 2, sof X would not di®ermuch from f ", but low-frequency
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Figure 2.3: Amplitude spectra of I-
tering function computed from (2.37)
substituting f" by f2 for N=100,
fe = 356, f" = 0:36. 2 is known

from (2.43) for di®erett ": " = 1)
fE=1f" (red);, " = 2) fX= 113
(black); " = 3) f& = 1.65(blue) T T T T

cortributions would be boosted suzciently. The caseof " = 2 is also preferred
by Frankel (1995) and Hartzell et al. (1999). Amplitude spectra of the required

‘Tter is then 3 )
op_l+ &
iIS(f)) = N—3—— (2.44)
1+ {5
where
fs
fé‘z@"—W (2.45)

A causaloperator with amplitude spectrum given by (2.44) is found using equiv-
alence
x (t) is causal , =[X (f)] = Hf< [X (f)]g (2.46)

where X (f) is Fourier transform of x (t), = and < denotesimaginary resp. real
part of an complex number, symbol Hf:::g is usedfor Hilbert transform. We
can write )

S(f)=jS(f)j €A® (2.47)

wherejS (f )j is the amplitude spectrum of S (f ) and A(f ) is the unknown phase
spectrum of S(f ). Applying on (2.47) logarithm, we get
logS (f) = logjS (f)j + i A(f) (2.48)

Let's assumdog S (f ) to be spectrum of causalfunction, then by applying equiv-
alence(2.46) we obtain
A(f) = HflogjS (f)jg (2.49)

sothat _ o
S(f) = jS(f)j e Hfleais(fig (2.50)

The result is complexspectrum of requested Itering function (seeFigure 2.4,in
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Figure 2.4: Filtering function in time
domain, computed applying inverse  —
Fourier transform on (2.50) (signal

was shifted to better resole delta
function at the beginning). N=100,
fe=356,f" = 0:36,fF = 1.13

Figure 2.5: Four displacemeh amplitude spectra us (f) for di®eren N, com-
puted from (2.28) and multiplied by (2.44), with the requesteddisplacemen am-
plitude spectrum of the mainshak ju™ (f )j, computedusing (2.2). The spectra
arenormalizedat f = 0to M,. Corner frequenciessatisfy (2.1).
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time domain). Incorporating linear Tter S(f) into our summation method (2.8),
we get
X
S =sHm - (i) (2.51)
m=1
wheres(t) is inverseFourier transform of S(f ) and asteriska denotescorvolution.
Figure 2.1 was recomputedusing Itering function. The result is in Figure 2.5.
We can see, that both very low and very high frequenciesspectral levels are
correct, however middle frequenciesspectral levels are slightly underestimated.
Physical basis of such Ttering is that low frequenciesof the mainshak are
cortrolled by long-wavelength variations of slip over the mainfault. Subeverts
obviously don't cortain sud information about theselong-wavelengthvariations,
thus one has to enhancethem (for example by linear Ttering). For detailed
explanation seeFrankel (1995), Frankel (1991) and Boatwright (1988).

2.5 Synthetic test

Algorithm of the summation provided above as- :
sure proper scaling of both low and high frequency Mg | 21610°Nm
parts of composite spectra. Howeer, scaling of mid- L™ | 25000m
dle frequencyspectral levelswasnot resolved properly, W™ | 25000m
becauseof the complexity of the summation process : 1
at thesefrequencies(frequenciesbetween corner fre- hvi | 2800ms
quencyof the mainshack and corner frequencyof the f& | O11HzZ
subewert). Irikura and Kamae (1994) shaved, that
for high number of subewverts (N & 400) there are Table2.1: Sourceparam-
signi cant sagsfrom ! i 2 spectrum. Tumarkin and etersof modelled evert.
Archuleta (1994) were solving similar problem of spectral de cienciescloseto
corner frequency of the mainshack. On the other hand, Frankel (1995) didn't
mertion any problemswith the shape of modelled spectra at middle frequen-
cies. With respect to theseuncertain propositions, we decidedto perform simple
syrthetic test to study behavior of our composite model, especially at middle fre-
guencies.Time histories of subevens for this test were obtained using stochastic
approad, similar to one presened by Boore (1983). Particularly, we generated
Gaussianwhite noiseand next we multiplied it by shape of ! i 2 amplitude ac-
celerationspectra (seerelation (2.4)). Summationwas provided using (2.51) and
(2.36). Resulting spectrawasidenti ed with spectra of accelerationtime history
at somevirtual station. The sourceparametersof the modelled mainshak (see
Table 2.1) were set to common values for evert of magnitude M,, = 6:2 (see
Somervilleet al. (1999)). Test was performedfor set of di®eret N (total num-
ber of subevents). 100realizationsof subeverts' time histories was generatedfor
eat value of N. The result of the test is showvn in Figure 2.6. Curveslabelled
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as synthetic amplitude spectra represeis averagemodelled spectra (averageis
made over 100 generatedtime histories of subeerts).

We can see, that modelled spectra shov signi cant discrepancieswith re-
guestedshape of spectra, similar to onesshavn by Irikura and Kamae (1994).
To avoid sud discrepanciesrom ! i 2 sourcemodel, we were forced to look for
more sophisticatedcomposite model. The idea of non-equalsizedsubeverts, im-
proving middle frequenciescomesfrom Irikura and Kamae(1994)and we expand

it in next chapter.
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Chapter 3

Subevents with non-equal sizes

Conceptof non-equalsizedsubeverts was rstly proposedby Boatwright (1982).
Further, Frankel (1991) expandedand generalizedthat idea to the statistical
sourcemodel with a cortinuous, self-similardistribution of subevent sizes, nding
relations, which cortrols the high-frequencybehavior of composite spectra with
respect to scalingof stressdrop and particular sizedistribution of subeverts. We
adopted that model and making someimprovemeris tried to useit in practice.
Seeral successfuapplicationsof sud models(Irikura and Kamae(1994),Zenget
al. (1994),Zengand Anderson(1996), Hartzell et al. (1999)) gave us motivation
for this part of study.

3.1 Fractal subevent size distribution

As we proposedabove, our adopted model is self-similar. It means,that the way
how behavior of level i + 1 subeverts a®ectdevel i subevert is samefor all levels
(seeFigure 3.1). This allows usto solwe only the problem of mainshack and level
1 subewerts. In next lines, we are going to determine high-frequencyfallo® of
the mainshak, evaluating the total high-frequencyenergy of level 1 subeverts.
Derivation is made following Frankel (1991), providing somemodi cations. We
notice, that we will strictly hold the total areaof level 1 subevents equalto the
areaof the mainshack, becausethis is, from our point of view, the only natural
condition for the total area of level 1 subeverts. Howewer, other authors (see
Zenget al. (1994), Zeng and Anderson (1996)) used successfullythe total area
of level 1 subevens greaterthan areaof the mainshack.

Self-similardistributions canbe quarti ed usingfractal concept(seeTurcotte
(1989)). Sothat the number N of subeverts with characteristicdimensiongreater
than or equalto R, occurring within mainshack area(/ R2.,), can be treated

as H 1o

N (R) / R"F‘;i” (3.1)

27
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Level i+1 Level i+2

Figure 3.1: Self-similar composite model

whereD is fractal dimension. The correspnding probability density function is

dN (R RD .
L)) Roar (3.2)

Further, we assumehat displacemen spectral amplitude - (f ) of subevent source
function decgs asa power ° of frequencyabove corner frequencyf ..

6y Mo, (3.3)

f
1+

where M, is the seismicmomert of the subevert. The amplitude spectrum of
radiated energyis proportional to the squareof the velocity spectral amplitude,
SO

E(f)/ f2-2(f) (3.4)
For high frequenciegf >> f.), relation (3.3) reduceto

- (F)/ fi7f. Mo (3.5)
sofor high frequencieswe can write (3.4) in way
E({f)/ f22fZM2 (3.6)
For seismicmomert we have relation

Mo/ ¢u(R)R? (3.7)
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where ¢ u is nal slip, which is treated as a linear function of R. Final slip ¢ u
can be asseiated with a static stressdrop ¢ % which represets the di®erence
betweenstresson the subevert beforeand after rupture, using relation

¢y TUR) (3.8)
R
SO we can write
Mo/ ¢¥R3 (3.9

Howe\er, static stressdrop can be generallydependen on the subevent's sizeR.
We prescribe dependencen form

¢¥% R (3.10)
By conmbining (3.10) and (3.9) with (3.6) we get
E(f)/ f22fZR?"® (3.11)

Since corner frequency f. is inversely proportional to subevert size R, (3.11)
becomes ,
E(f)/ fAZ¥RZi2+ (3.12)

Total high-frequencyenergydE(f) radiated by subeverts with sizeswithin the
range (R; R + dR) can be expresseds

dE(f)/ E(f) dN (3.13)

where dN is number of subewerts with sizewithin a range (R;R + dR). Then
using (3.2) we get

dE (f)/ f22R¥i2iDSRD . dR (3.14)
wheredE is total high-frequencyenergyradiated by subeverts with sizeswithin
therange(R; R+ dR). Further weintroduceR,, and R« Which denoteminimal
and maximal sizeof level 1 subevernts within mainshack, respectively. The high-
frequencycontent of subeverts sumsincoherertly (seesections2.3.2and 2.3.1),
sothat their energyis additive. By \high-frequency" we meanfrequencied >>
f emin » Wheref.min is the corner frequencyof the smallestsubevert®. Therefore
the energyof the mainshak E,n at a given frequencyf (f >> f.q,n) canbe
determined evaluating integral

£ Roac gE (1)

Emain (f) / R drR

drR (3.15)

ldenotation f¢min May be misleading; although it is linked with the smallest subevert (as
shown by the subscript), it represerts the highest denoted frequencyin the model.
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SinceEman must satisfy (3.12) for R = Ryain , We obtain

R max

f212RZiZiDHSRD L dR (3.16)

2i 2°p2i 2°+6
f R main
Rmin

main = p

wherep is constarnt of proportionality. Obvious modi cations of (3.16) will pro-
duce
22 D+6 Rmax
Rme{in =p

RZ1 21 D% gR (3.17)

Rmin
Now it's possibleto eliminate p, by assumingthat the sum of subevents' areasis
equalto the areaof the mainshack. For simplicity, we assumecircular subeverts.
The areaAgyp (R) of the subevent with radius R is

Asub (R) = 1/R2 (318)

The total areadA of the subevents with radii within (R;R + dR) is given by

dA(R) = ¥pRi PR . dR (3.19)
and nally the total areaA of all subewerts is
Z Rmax
A= pYyRP.. RiP*1 dR (3.20)
Rmin

AssumingA equalto he areaof the mainshak ¥Rz .., (3.20) becomes

1 Z Rmax
o = RPi .2 Ri P*1 dR (3.21)
Rmin

The integral (3.21) hastwo di®erern solutions accordingto parameterD. Since
now, our derivation slightly di®ersfrom the one, preserted by Frankel (1991). In
caseof D = 2, we get

% = [InRJz™ (3.22)

and in caseof D 6 2, we get

1_ ., RiD2:Rm
- = . 2
p main I D + 2 Runin (3 3)
Substituting (3.22) and (3.23) into (3.17) produces
2 2°+4 1 ‘ Rmax 2 2°+3
D = 2; R? ain I R R dR (3.24)
R min min
- g0 2i D Rmax ..
D62, RZZ™ = L2 RZiZiDS gR  (3.25
e Rl‘znla)l? i err‘llinD R min ( )
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One can easily prove that

1 Z Rmax
T RildR=1 (3.26)
Rmin min
2i D Rmax
! RIPdR=1 (3.27)

2: D - 2i D
Rm'ax | Rmin Rmin

hencevariables®, ~ have to satisfy relation
i °+2=0 (3.28)

for all valuesof D. Rearrangingterms in (3.28), we get the nal expressionfor
high-frequencyfallo® °
°="+2 (3.29)

It meansthat high-frequencyf >> f.n, spectral fallo® ° depends only on
scaling stressdrop with subevent's radius, descrited by ~, and is independen
of the fractal dimensionD. The relation (3.29) di®ersfrom that one derived by

Frankel (1991),

°:'i%+3 (3.30)

That is causedby preservingthe condition, that the sum of subeweris' areasis
in our derivation equalto the areaof the mainshack for all valuesof D.

It is usefulto ewaluate shape of composite spectra, to verify results derived
above and to study their behavior for frequenciesbetweenthe corner frequency
of the mainshack and the corner frequencyof the smallestsubevernt (often called
middle-frequencies). Presuming for a while incoheren summation even in the
middle-frequenciesa composite spectral amplitude - 8 (f) at given frequencyf
can be expresseds

S o
Z Rinax
i) = - Ry N

o iR dR (3.32)
where- - (f ; R) is cortribution of subewvents with sizeR, high-frequencyslope° to
the composite spectrum at given frequencyf . All terms have to be expressedy
variable R and parameters® and D, usingsuitable relations derived above in this
chapter. The resultsfor Ryin = 1km, Rpax = 5km, Rpain = 10km and for num-
ber of di®eren setsof parametersare shovn in Figure 3.2. For high-frequencies
f >> f.min both composite spectra match the fallo®°, the high-frequencyfallo®
of the subevents (self-similarity is presened) and the mainshak. The high-
frequencyfall-o®, descrilked by °, seemto be really independen of D. For the
middle-frequencied cmin > f > femain the composite spectrum becomesslownly
insuzcient, becausethe summation processin the middle frequenciesbecomes
partially coheren, however we assumedncoherer summation. One could expect
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T T} Ty T Ty Ty UL AL L L L
— h=1 g=3 — h=1 g=3
T T T Ty Ty Ty T T Ty T Ty

Figure 3.2: Requestedamplitude accelerationspectra of the mainshak (black)
and composite amplitude accelerationspectra (red) for four setsof parameters.
Parameterswere chosento verify (3.31), especially the independence® of D.
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better resultsfor the middle-frequenciesif we sumup time seriesdirectly, taking
into accour partial coherency
Further, Frankel (1991) shaved independerily 2, that D and ~ are related in
way
D=2j° (3.32)

Substituting “ in (3.29) by D, using (3.32), we get
°=4; D (3.33)
while Frankel (1991) obtained (using (3.30))

°=5j g’D (3.34)
2
The expressiong(3.33) and (3.34) can be directly compared, one can seethat
they becomesamefor D = 2.
In further study we prefer” = 0,° = 2, D = 2. As we proposedabove (see
(3.32), (3.33)), just one of these”, °, D can be treated independenly. Thus

the choiceD = 2,” = 0, ° = 2 can be explained in three di®eren ways.
We can hold D = 2 (produces” = 0, ° = 2), aswell aswe can hold ° = 2
(producesD = 2, = 0), aswell aswe can hold ~ = 0 (producesD = 2,

° = 2). All of thesethree valuesseemto be acceptableindependerly and it's
appreciablethat they fully satisfy equations(3.32), (3.33). The choiceD = 2,
" = 0,° = 2is supported by number of papers. Hanks (1979) and Andrews
(1980) have suggestedthat stressdrop independeri of seismicmomert ( = 0)
produces! i 2 high-frequencyspectral fallo®. Bernard (1996) successfullyapplied
D = 2in modelling stochastic slip distribution. Moreover, Mai and Beroza(2001)
analyzedrecen sourceinversionsfor number of great earthqualkes,getting fractal
dimensionD = 2:3 of nal slip distribution, Somervilleet al. (1999) indicates
D w 2, too.

2here without proof
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3.2 Discrete realization of FSSD

To usethe fractal subevernt sizedistribution (for short, FSSD) in practice, one
hasto ewlute its discretizedform. Following Irikura and Kamae (1994), we are
goingto producediscretedistribution of subeverts, which meetsthe probability
density function, heredenotedn (R), (3.2) for D = 2

8
2 0 O0<R< Rmin
2 .
n(R)= N =pfme  Ryp < R< Rpa (335)
"0 Rmax <R< Rmain

We propose nite integer number M of subevert types. The type of subewert is

subewents with sizewithin arange(R;;R; + ¢ R). In other words, number N; of
subevents with sizeR; is equalto number of subeverts with sizewithin the range
(Ri;Rj+ ¢R), so

Ni = n(Ri) ¢ R (3.36)
For all R; within (Rmin ; Rmax) We have
R2 .
N; = p%ct R (3.37)

In practice, the fault is usually taken as a rectangle. That's why we assume
rectangularsubevents and further, for simplicity, squaresubeverts. The constart
of proportionality p will be determined by letting the sum of subewerts' areas
equalto the mainshak area:

X
NiR? = R? (3.38)

main
i=1

then putting (3.37) into (3.38) produces

1
i=1 R;
thus (3.37) becomes
- ernain ¢R
N; = PW R_|3 (3.40)
1=1 R;

The choiceof ¢ R is not trivial, although it may look like. If we simply set¢ R

as
I:amax i Rmin

M
we obtain common equidistart subdivision of the range (Rmin ; Rmax)- (3.40)
then producesN; ezciently equal to zero for higher R;. In other words, we

¢R= (3.41)
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Figure 3.3: Discrete realization of FSSD with following parameters: M = 6,
Rmain = 80Rmin, Rmax = 64Rnmin . Histogram on right side shav appropriate
distribution of numbersof subeverts with respect to their sizes.Redline denotes
Ri 2 decy.

get exciently non-zerovaluesof N; only for smallesttypes of subeverts. For
example,we will consequetly 1l the mainfault only with two typesof subeerts,
howewer we prescribed M = 6 (M becomesezciently equalto two, although it
was formally setto 6, becauseN; = O for i > 2). It is clear, that the higher
number of subeverts typesin the model s, the better represetation of cortinuous
subewert size distribution is adchieved. So we requestthe high numbers M of
subevents' typesto be exactly presen in the model (N; , 1,foralli= 1:::M).
We solved the problem by setting

¢R=¢CR; (3.42)

then
Ri+1 = Rj+ ¢ R; (3.43)

It is clearthat ¢ R; hasto increasewith increasingR; to get the number Ny, of
greatestsubevens equal minimally to one. Particularly, we put

¢CRi=Ccl'¢R; (3.44)

wherec is constart greaterthen 1 and ¢ R; is width of rst interval, represeted
by subevent with sizeR,, . The choiceof c and ¢ R; is not arbitrary, because

condition
h

i=1
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hasto be satis ed. By substituting (3.44) into (3.45), we obtain

X
¢R, cit= Rmax i Rmin (3.46)

i=1

and using relation for sum of geometricprogressionwith quotient c, we get

ci 1
¢R1_ !

= W(Rmax i Rmin) (3.47)

The value of ¢ R, is thus determined by choice of c. Hence, the number of
subeverts N; with sizeequalto R; is

_Rii, CR

main

=t R
where ¢ R;(;) is determinedfrom
¢R-:dilci—1(R i Rmin) (3.49)
i oM i 1i 1 max | min :

The optimal value of parameter c was found ¢ 2 2. Now if N; are generated
properly, it is not problemto distribute the subevents randomly (we incorporate
stochastic componert to the sourcemodelling) over the mainfault, sothey don't

overlap with ead other. In Figure 3.3, we can seean exampleof onerealization
of FSSDgeneratedby subroutine FRACTAL. A hardcopy of the subroutine with

brief descriptionis placedin Appendix. To precludeany confusionsabout R pax ,

we suggestthat Rox denotesRy + ¢ Ry . As it was proposedabove, subeverts
within the range (Ry ;Ru + ¢ Ry ) are represeted by subevent with sizeRy, .

Hence,the biggestsubeven visible in Figure 3.3 hassizeRy (particularly Ry =

32Rmin ), NOt Ryax (particularly Rmax = 64Rnmin ).

3.3 Summation pro cessfor FSSD

In this sectionwe will construct summationscemein similar way asit wasdone
for equalsizedsubeverts in Chapter 2. At the end of section3.1we have proposed
that we prefer constan stressdrop scaling(in 3.1represetied by~ = 0) and ! i 2
sourcemodel (in 3.1 represeted by ° = 2). Hence,we can incorporate into our
considerationssections2.1, 2.2, sowe can useresults of Chapter 2, just adjusting
them to be consisten with FSSD. We propose

hd X ¢
S = sMe -t (3.50)

j=1 i=1
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Figure 3.4: Modelling M,, = 6:2, using tapered white noise as a time history
of subevert for one realization of FSSD with following parameters: M = 6;
Rmin = 3125M Rpyain = 80Rnin; Rmax = 64Rnmin (the distribution depictedin
Figure 3.3). The subevert momert magnitude rangesfrom 2.4to 5.4.

where- 8 (t) is modelled composite time history, M denotesnumber of subeverts
types, subscript j denote subevert type, s;(t) is Ttering function similar to
th_eione ingroduced in section 2.4, N; denotesnumber of j -th type subeverts.
-1t tj Is time history of ij -th subevert (i-th subewert of j-th type), tj is
time whenij -th subewert is initialized. N; is determined from (3.48) for given
valuesof M, Rmain » Rmin @and Rnax (Seesection3.2 for detailed description). To
obtain amplitude spectra of Itering functions s;, we cannot usedirectly (2.44),
becauseN is not de ned in model with non-equalsizedsubeverts. We override
this formal problem by putting (2.7) into both (2.44) and (2.45), so

3

iISHi= —3 3 (3.51)
Mo 14 ff—éﬂ
U 1
« . M 6

fr=fl oo (3.52)

whereM !, 1 are scalarseismicmomert and corner frequencyof j -th subevert
type respectively. Next we show, that summation scheme descriked above pro-
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ducescorrectlevelsof compositeamplitude spectra. We assumehat low-frequency
cortributions sum coherenly (seesections2.3.1and 2.3.2), thus using (2.1) and
(2.3) produces

- ' X = N L VEAES J
us(f! 0= js(f! 0 U (! 0y J
j=1 i=1 j=1 ° i=1

IR VI L R VIR B

|
v

M
k=1 Rk j =1

solow frequencylevels of composite spectra are scaledproperly. High-frequency
cortributions, we assume,sum incoherenly (seesections2.3.1and 2.3.2), thus
using (2.1) and (2.5) produces

—. DA 2)@1 - S
e fr 1)°= jsp(f ! 1)j WE 1)/
i=1 i=1
R e, M Lo ¢
/ Mélféz — NjIMéZIféﬂ':
j=1 i=1 j=1
T M eRg R. R2 0 c
k=1 Ry j=1 ! u i q ' 0
2, 4
=PM1 X ¢ R My 3|M(j)¢2 My =
¢R .
k=1R—kkj:1 RJ Mé M(J)
1 X R i ¢,
=P em g MOED = M (N (354)
k=1 Ry j=1

so high frequencylevels of composite spectra are scaledproperly.

We recomputed synthetic test described in the section 2.5 (seesection 2.5
for detailed description of the test), applying FSSD and summation schemerep-
reserted by (3.50). The result is in Figure 3.4. Curve labelled as a synthetic
amplitude spectra represets an average modelled spectrum (averageis made
over 100 generatedtime histories of subeverts) for one realization of FSSD. We
can seethat discrepanciesn middle frequenciesspectral levels were successfully
removed. But on the other hand, we obtain slight underestimation of low fre-
guencies(f < 0:6Hz). Howewer, strong motion seismologyis focusedon higher
frequencieswhereis our model correct.
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Spatial variations of final slip Slice (ky=0) of appropriate
S R amplitude spatial spectra
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Figure 3.5: Final slip spatial variations for onerealization of FSSDwith following
parameters:M = 6, Rypain = 80Rmin, Rmax = 64Rmin . The graph on the right
sideshaws the slice (k, = 0) of appropriate 2D amplitude spatial spectrum. Red
line denoteski ? decy.

3.4 Spatial variations of nal slip
Looking carefully at (2.1), one can seethat non-equalsizedsubevent distributed
over the mainfault produce spatial variations of nal slip over the mainfault.
Particularly

H M ﬂ%

Mg

o

hui! = i ™ (3.55)

where hui’ and hui™ denote average nal slip of j -th subewvert type and main-
shack respectively. But taking into accourt (3.51) and (3.52), it becomesclear
that low frequencycortributions are boosted exactly to one level, samefor all

subewert types. This level is proportional to hui™. Thus we get homogenousslip

at low frequencies.On the other hand, Ttering functions don't a®ecthigh fre-

guencies.Hencewe obtain spatial variations of nal slip (seeFigure 3.5) only at

high frequencies.We analyzedthesespatial variations by 2D Fourier transform,

getting ki 2 decy of slice (ky, = 0) of 2D amplitude spatial spectrum (seeFigure
3.5). The ki ? slip distribution is proposedby theoretical studies Bernard et al.

(1996), Hisada (2000), Hisada (2001) and it alsoseemdo be veri ed by analyzes
of recen seismicsourceinversions(seeMai and Beroza(2001), Somervilleet al.

(1999)). That is why we beliewe, that our model is well constrained.
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Chapter 4

Mo delling of subevents

Time histories of subevents can be generally obtained by seweral ways. Most
common s to use aftershacks as time histories of subevents (Irikura and Ka-
mae (1994), Frankel (1995), Hartzell et al. (1999)), which is usually called EGF
method (Empirical Green's Function method). Although EGF method carries
advantage of full information on source-receigr propagation e®ects,it has lim-
ited range of applicability (regionswithout seismicstations, signal/noise ratio,

determination of aftershack's medanism, etc.). Thus it is inconveniert for pre-
diction of strong ground motion. Other approad is usingsyrnthetic time histories
of subewerts. Thesecan be obtained using either deterministic methods ( nite-

di®erencemethods, discrete wave number method, etc.) applied by Zenget al.
(1994), Zengand Anderson (1996), Hartzell et al. (1999) or stochastic methods,
wherethe synthetics are obtained by Ttering of white noise,appliedwith particu-
lar modi cations by Beresnevand Atkinson (1998),Kamaeet al. (1998), Hartzell
et al. (1999). We decidedto follow fully deterministic approad of subewerts'
modelling.

4.1 Kinematic modelling of subevents

Using represemation theorem(Aki and Richards, 1980),the ground displacemen
U (x;t) at position x andtime t is
z

Uty = mg (m1) o S Xi2iti TO) g
§ @q

(4.1)

where § denotesrupture fault of subevert, my, is componert of surfaceseismic
momert density tensor,» determinesposition on the subfault, Gy, is a componert

of Green'stensorandt’ isrupture time. The asteriska denotesconvolution. Just

for pure shear

Mpg (1) = 2 Cu(»)s(»t) (Np°+ Ng°p) (4.2)
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where ! is shearmodul, ¢ u(») is nal slip, s(»;t) is slip function, n and °
are vectorsdetermined by focal medanism (for detailed description seeAki and
Richards, 1980)). Rewriting (4.1), using (4.2) and properties of convolution

. £ AP @kp (X V>, t)
Uk (x;t) = Leu»)s(»ti t'(») (Np°+ Ng°p)r———"—"=d§ (4.3)
§ @q
By discretizing (4.3) we get
Xt Xw i ¢ Y
U (X;t) = 1 ¢ u; Sj 't ti (Np°q+ Ng°p) @ —@kaé;,»,t)_ ¢8
i=1 j=1 4 », 8.

wheren,_ and ny, are numbers of discrete elemens along strike and dip, ¢8 is
areaof elemen, ¢ u;, ti ands; (t) are nal slip, rupture time and slip function
on ij -th elemen, respectively and »; determinescerter of ij -th elemen. Now,
we rewrite (4.4) in terms, which are suitable for our procedure

X Xw i ¢
U (x;t) = Leuysy tity a6y (x;t) ¢8 (4.5)
i=1 j=1 -
@B (X3 » 1) —
Gj (X;t) = (np°+ Ng°p) M— ex (4.6)
@q »

ij
whereey is setof basevectorsin which we exactly compute ground displacemen
U (x;t), Gj (x;t) canbe directly computedin 1-D medium by DW-code (Bou-
chon (1981), Coutant (1989)) and we will call it impulse response. The technical
details of computation of impulse responsesare discussedin section4.3. It is
very reasonableto provide summation processin frequency domain, hencewe
transform (4.5) in

X R i ¢
U((x;f)= Yeu; s (f) exp i 2vf t; Gy (x;f) ¢8 4.7)

i=1 j=1

In next sections,we are goingto discusead parameterin more detail.

4.1.1 Final slip and slip velocity function on the subevent

As it is written above, we usekinematic approad for modelling subeverts - rela-
tively small earthquakescomparedto the mainshak. That's why we presumeto
make ¢ u; ands; (f) independert of their position on the fault (we get subscripts
ij o®). Final slip ¢ u of the subewert is relatedto its characteristic dimensionus-
ing (2.1). As slip velocity function s(t) we favor functions which have ! i ! decy
in frequencydomain (e.g. box-car), becausewe need! | ? decy in displacemen
spectra (as in standard Haskell model, seeLay and Wallace (1995)), on eadh
subevert.
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Rupture time deviations from radial rupture Slice (ky=0) of appropriate
e amplitude spatial spectra
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Figure 4.1: Spatial distribution of rupture times deviations from radial rupture,
for onerealization of FSSDwith following parameters:M = 6, Rmain = 80Rpin ,
Rmax = 64Rmin . The red star denotesthe hypocerter of the mainshak. The
graph on the right side shaws the slice (ky, = 0) of appropriate 2D amplitude
spatial spectrum. Red line denoteski ' decay.

4.1.2 Rupture time

In our casewe assumethe rupture front spreadsradially from nucleation point
with constart rupture velocity v,. As a nucleation point can be taken generally
any point of the subewvert. Rupture time tj is exactly the time betweennucleation
of subevert and the momert, when the rupture front meetsthe certer of ij -th
elemen of the subewert. Thus for tj; we have

q
(eLi M+ (W »)°
= Sca " (4.8)
r

where¢ L and ¢ W arelength and width of elemen, respectively, »° is a vectorin
the subfault determining a position of the nucleation point of the subevent. Par-
ticularly, we chooseasthe nucleationpoint of the subevert the closestpoint to the
mainshack hypocerter. Let's have look what sud choice causesn combination
with radial rupture on the subevent, independen subevert timing (determined
from (2.36)) and fractal subevent sizedistribution. To summarizethe facts, the
mainfault is cut into number of subeverts, which are further cut into number of
integrating elemerts, sothat mainfault is in fact cut into theseintegrating ele-
merts, too. If we modelledthe mainshak fully kinematically usingradial rupture
with constart v,, we would get obviously cortin uousspatial distribution of timing
of the integrating elemerts with respect to mainshak's hypocerter. Howeer, in-
troducing subevents with independen radial ruptures causeghe deviationsfrom
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suc continuous spatial distribution. Especially on the bordersof the subeverts,
the timing of the integration elemerts with respectto mainshak's hypocerter be-
comesdiscortinuous. The caseof onerupture velocity for both spreadingrupture
on subeverts and for timing of subeverts (usedin (2.36)), is depictedin Figure
4.1. We analyzed obtained spatial distribution of these deviations from radial
rupture by 2D Fourier transform, getting ki * deca of slice (ky = 0) of 2D am-
plitude spatial spectrum (seeFigure 4.1). This result doesn't coincidencewith
theoretical propositions of Hisada (2000) and Hisada (2001). Howeer, spatial
variations of rupture velocity over the mainfault of recert earthquakes have not
beenstudied systematically yet. We emphasizethat our proposition of inhomo-
geneousrupture velocity is introduced arti cially and missany deeger physical
explanation, but on the other hand is not in direct cortradiction with any obser-
vations.

4.1.3 Sampling of the fault plane

Sampling of the fault plane is usually expressedn form of number of samples
k on minimal computed wavelength , i, . The numbersn_ and ny of samples
along strike and dip are

n.= (4.9)

(4.10)

Nw

wherelL is length and W is width of the fault. | i, can be expresseddy f max,
the highest computed frequency using relation

Vr

(4.11)

> min fmax
where v, is rupture velocity, which is in our caseconstart. Rupture velocity
is consideredhere instead of v and vs (P-wave and S-wave velocity), because
Vp > Vs > Vv, usually, thus , mi, is guararteedto be minimal. Putting (4.11) in
(4.9), (4.10), we get

ng= Ko (4.12)
Ny = <fmcw (4.13)
The total number M of samplesover fault is
H Kf [P
M =n_ny = m LW (4.14)

and f max IS given by
fmax = N¢f (4.15)
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where N is number of frequenciescomputed, ¢ f is step in frequencydomain.
The summation processis madein frequencydomain, sothe total number Nto+
of computing stepsis

NTOT =2M N (416)

The multiplication by 2 appearshere becausecomputed spectrum is a complex
function (real and imaginary parts are computed separately). Using (4.14) and
(4.15), we get q

Mgt "2

N = 2N?3
TOT Vr

LW (4.17)

The above derivation is for xed n_, ny independer of the calculatedfrequency
We attempted to decreaséNto1 by modifying (4.12) resp. (4.13) in the way that
n. = n(f) resp. nw = nw(f), particularly substituting f nax by f

no= AL (4.18)
nw = STW (4.19)
Then the number M; of computing steps,neededfor j -th frequencyf = j ¢f, is
H [P
M = 2 k\(/” LWj? (4.20)
r

and the sum over whole desiredfrequencyband produce

XN uk¢fﬂ2
Ntor = 2
j=1

LWj?2 (4.21)

Vr

Using relation

X 2o N (N + 1)(2N + 1)

& (4.22)

yields u q
3 4+ 2 4 2
NT0T=22N 3N“+ N " k¢f LW (4.23)
6 Vy
Ntot is plotted in Figure 4.2 as function of N using (4.17) and (4.23). If we
divide (4.17) by (4.23),thenfor N ! 1 , we get

lim 6N * =
NiT 2N3+ 3N2+ N

(4.24)

In other words, for high N we needonly onethird of computing steps,compared
to the caseof samplingindependen of frequency By high N we meanN > 50,
approximately (Figure 4.2).
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Figure 4.2: a) Number of computing stepsneededvhenusing x sampling(black)
and frequencydependert sampling (red), b) Ratio betweenthe number of com-
puting stepsusing x and frequencydependen sampling

The choiceof k dependsmainly on a relative position of the receiver and the
fault plane. Computed spectrum hasto be independert of k. Asarule k = 6is
often considered,but it can be shavn, that in somespecial casest's not dense
enough. On the other hand, in someother caseseven lower value (e.g. k = 2)
is enough. That's important, becausecomputing time is proportional to k? (see
(4.23)), sosetting up k low can save computing time signi cantly.

As we proposedabove, kinematic modelling is exactly numerical evaluation of
integral (4.1). The summation with "xed samplingis the most primitiv e way of
numerical integration. With frequency-degndert sampling we exactly take into
accour in°uence of integration parameterf ona nal result of integration. The
method of integration can be likely further improved.

4.2 Point-source appro ximation of subevents

Point-source approximation is an another approad to earthquake sourcemod-
elling. Although it haslimited exterts of application, it simpli es and speedsup
the computation signi cantly. Approximation is carried from (4.1) (seeAki and
Richards (1980) for more details) getting

@ip (X7 1) —

Uk (X; 1) = Mpq (1) @ @, N

(4.25)
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where», denotescerter of the subevert, M, is seismicmomert tensordetermined
from o
Mpg(t) =1 CuL Ws(t) (Np°+ Ng®p) (4.26)

where ¢ u is an averageslip on the subevert, L and W are length and width of
the subevernt. The rest of parametersappearingin (4.25) and (4.26) is described
in section4.1. Putting (4.26) into (4.25) produces

U;t)=1LWEus(t) aGofx;t) (4.27)

Go(X:1) = (Npq + Ng®p) wi e (4.28)
q ))0

where G, is exactly the impulse responseintroducedin section4.1.

Average nal slip ¢ u of subevert is related to its characteristic dimension
using (2.1). Spectrum of sourcetime function s(t) (derivative of slip function
s(t)) of the subevent is prescribed following Brune (1970):

1

s(fy=3s—— - (4.29)

1+
Cc

wherei is imaginary unit and f ¢ is corner frequencyof subevert, which is in our
casedeterminedfrom

V,
fo= az (4.30)

wherev; is rupture velocity, R denotescharacteristic dimensionof subevent and
a is free parameter constart for all subeverts. The choice of a play great role
in prediction of strong ground motion, becausehigher a causeshigher f 3 which
causeghe higher level of the plateau of accelerationspectrum (see(2.5)), thusit
should be handled very carefully. From our practical point of view, it seemsto
be feasibleto usea = 1 (seechapter 5) for subeverts which are nearly squares.

4.3 Calculation of impulse responses

In caseof kinematic modelling, impulse responseof medium, as it was de ned
in section4.1, is neededin nite number of points covering subevert. As the

subevents fully 1l up the mainfault we needimpulse responsesin grid covering
the mainfault. Density of sud grid dependsof maximal computedfrequency In

section4.1.3it was shavn that the number of elemens (points of grid) grows
rapidly goinginto high frequencies.Thusthe number of impulseresponseneeded
grows too. Although the computation of impulse responsewith DW-code (Bou-

chon (1981), Coutant (1989)) is simple and quite fast, time and memory requests
becomeunijusti able for such numbersof impulseresponsegthousands). The fre-
guencydependent sampling presentied in section4.1.3accelerategshe summation
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Figure 4.3: The in°uence of density of primary grid, on resulting spectra. Case
of kinematic modelling of subeverts.

itself, but it doesn't solve growing requiremerts on number of impulse responses.
It makes the requiremens ewven higher, becausewith ewery new sampling we
need generally new set of impulse responses. To overcomethese problems we
introduceinterpolation of impulse responsesover the mainfault. Particularly, we
use 2D cubic spline interpolation taken from Presset al. (1992). The outline
of algorithm is obvious. At rst we compute impulse responsesby DW-code in
"xed grid (one can call it primary grid) covering the rectangle which cortains
the mainfault. It isimportant to computeimpulse responsesin points which are
out of the mainfault too, to perform reliable interpolation up to borders of the
mainfault. The interpolation of complex spectra (real and imaginary parts are
treated independertly) from sud a grid is madestep by step for ead frequency
getting spectra of impulseresponsein any arbitrary point of the mainfault. This
allows usto usefrequencydependernt samplingwithout growing requiremers on
the number of impulse responses. We emphasize,that we don't say that sud
interpolation of impulse responsesallows us to go with computations to very
high frequenciesjeaving the primary grid, from which is the interpolation made,
untouched. We expect that spectra of the impulse responsesat high frequencies
would not be so smaoth, to be transcribed by relatively low number of values,
soto compute high frequenciesve needto make interpolation from densergrid.
The in°uence of density of primary grid on resulting composite spectra is shovn
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Figure 4.4: The in°uence of density of primary grid, on resulting spectra. Case
of modelling of subevents as point sources.

in Figure 4.3 (kinematic modelling of subeverts) and Figure 4.4 (subeverts are
modelled as point sources). Thesepictures shav composite spectra for onereal-
ization of FSSD. 1D velocity model usedhere has 10 layers with vs = 400msi !
in the top layer, mainfault sizeis 20£ 25km, primary grid sizeis 24£ 28km, rup-
ture velocity is v, = 3000msi !, Station is placedon the surfacewith epiceriral
distance equal to 11km. In caseof kinematic modelling of subevents, compu-
tation was made for both xed and frequencydependen sampling and for two
valuesof k (k = 6 and k = 12) getting identical resultsfor all four cases.Hence,
k = 6 and frequencydependert sampling performedwell in this special case.We
can seethat calculation is surely correctup to 1Hz for 25£ 25 Green'sfunction
in primary grid (that is determined from fact, that the spectra for 25£ 25 and
20£ 20 Green'sfunction in primary grid coincidenceup to 1Hz appraximately,
seeFigure 4.3 and Figure 4.4).
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Chapter 5

Applications

5.1 Athens 1999 earthquak e

Strong motion modelling, using composite model

descritedin section3.3,wasperformedonthe Athens strike 135
1999 earthquake (M,, = 5:9). The choice of this dip 55
evert was not random. Other methods were de- rake . 84t

veloped at the time at our departmert and Athens

m . 7
1999earthquake was suggestedor comparison. The Mo 7:810"Nm

sourceparameters(Table 5.1) were taken from Za- Lm 7500m
hradrflk and Tselertis (2001). 1D model used for wm 6000m
computation of impulse responseswas taken from ™ 0:55m
Novotn§ et al. (2001). Subeverts were modelled as :

point sources(seesection4.2). The choiceof charac- vV 2800ms' *
teristic dimensionR was not problem here because fm 0:37Hz

the mainfault is nearly square(seeTable 5.1), par-
ticularly we put R equal to the subewert's length Table 5.1: Basic source
L. The value a = 1 (seesection4.2) was preferred parametersof the Athens
following Zahradrflk and Tselertis (2001). The rup- 1999 earthqualke (M,, =

ture starts at the westernbottom corner (38:08*N, 5:9).

2358 E, depth 12000m) and spreadsradially with

constart rupture velocity. The parametersof FSSD are in Table 5.2. It is ex-
actly FSSD shavn in Figure 3.3. The only reasonfor sud choice of FSSD was
relatively high value of M. The calculation was madeup to 6Hz. One can see,
that choice of point sourceappraximation for bigger subeverts is discussableso
using kinematic modelling would be more appropriate here. The computation
was performed for 56 receiwers placed on four conceitric circles with certer in

the epicerter of the mainshak and with radius rangesfrom 5km to 20km. The
results (seeFigure 5.2) are PGA maps computed for 100 realizations of FSSD.
By onerealization of FSSDwe mean,onerealization of spatial distribution of set
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j 1 2 3 4 5 6

N, 1 4 16 | 68 | 271 | 1156
L; (m) | 3000 | 1500 | 750 | 375 | 188 | 94
fi(Hz) | 0.93 | 1.87 | 3.73 | 7.5 | 14.93 | 29.87

Table 5.2: Parametersof applied FSSD.

of subeverts given by Table5.2. By PGA we meanjust absolutemaximum from
all three componerts of given accelerogram.

Howewer, missing instruments in the near- eld sourceregion make the com-
parisonwith data hard. Especially, in the regionwith major damagesno strong
motion measuremets are available. Thus the only information about strong
ground motion at theselocations is from macroseismicdntensities published by
NOA (seeFigure 5.1). We can seethat synthetic PGA maps (Figure 5.2) ex-
plain main featuresof macroseismiceld (Figure 5.1). Maps of averagePGA and
maximum expectable PGA can be interpreted asa prediction tool. On the other
hand, map generatedfor onerealization of FSSD can be comparedwith obsened
macroseismidntensities. Proposedstandard deviations » 25% (seeFigure 5.2)
seemto be reasonable.

Intensities
23.4 23.6 23.8
| L | L |

38.2 - 38.2

Figure 5.1: Macroseismicintensities
published by NOA. Star denotesepi-
certer. Diamondsdenoteplaceswhere

the macroseismiadata were collected. ., | L 380
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Average PGA map Maximum expectable PGA
23.4 23.6 23.8 23.4 23.6 23.8
L Il L Il Il ) Il L Il

|

38.2 -38.2 38.2 -38.2

38.0 -38.0 38.0 -38.0

- ‘ T T T ‘ T
23.4 23.6 23.8 23.4 23.6 23.8

Standard deviation of PGA (%) PGA map for one FSSD realization
23.4 23.6 23.8 23.4 23.6 23.8

38.2 38.2 38.2 -38.2

-38.0

234 236 23.8 23.4 23.6 23.8
Figure 5.2: The results for Athens 1999 earthquake. PGA are carried out in
msi 2, standard deviationsin percertage. Star denotesepicerier, triangles denote
villageswith major damage.AveragePGA map showv exactly the averageof 100
realization of FSSD. Maximum expectable PGA map showv the sum of average
PGA and standard deviation of PGA (in msi ?). Last map shovs PGA computed
for onerealization of FSSD.
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Chapter 6

Discussion and Conclusions

The composite source model with fractal subevent size distribution described
above, represets reliable seismicsourcemodel for strong ground motion mod-

elling for frequenciest > 1Hz, removing amplitude discrepanciesn middle fre-

guenciesspectral levels. Howevwer, there is clear de ciency at low frequencies,
indicating needof hybrid schemespreserted by Kamaeet al. (1998)and Hartzell

et al. (1999). Hybrid sthemescombine kinematic approad (usedto model low

frequency part) with composite approad (usedto model middle and high fre-

guencypart). Hybrid sthemesseento be mostsuccessfuin strongground motion

modelling, at the time (seeHartzell et al. (1999)). Sothe method is worth to be
implemerted into our model.

Fractal dimensionD, characterizing generally any fractal distribution, is in our
casedetermined(following Frankel (1991))just from stressdrop scaling. Constart
stressdrop scalingcauseD = 2. Irikura and Kamae (1994), Zenget al. (1994)
and Hartzell et al. (1999), all of thesewereusingD = 2, howewer, they cameto
this value in di®eren way (they usedexactly (3.27)), which is from our point of
view lessrigorous. We do not considerformula (3.27) to be generally correct in
caseof non-overlapping subeverts fully 1ling up the mainfault.

We have described algorithm of generationof FSSDfor practical use. The source
code of FORTRAN 90 subroutine FRACTAL, generatingsud spatial distribu-

tions of subeerts, is part of the thesis (Appendix). Hence,FSSD can be imple-
merted easily by anyonewho is interestedin.

The favorable feature of FSSD is incorporation of nal slip spatial variations
over the mainfault. The fact that non-equalsubevents produce inhomogeneous
slip was rstly found out by Zenget al. (1994). We have further showed, that
our implemertation of FSSD with fractal dimensionD = 2 produceski 2 slip
distribution, which isin agreemenwith recer sourceinversions(Mai and Beroza
(2001)). That invokesthe ideaof well constrainedfuture seismicsourceinversion,
using our implemertation of FSSD.
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Although our study wasfocusedon composite sourcemodelling, we partially came
in touch with kinematic sourcemodelling, proposing someimprovemerts, which
may speed up computations signi cantly. Particularly, we proposedfrequency
dependent sampling together with interpolation of impulse responsesover the
mainfault.

Finally, the application on Athens 1999earthquake shoved capabilities of FSSD
composite model combined with syrthetically computed subeverts. The gener-
ated PGA mapsare in agreemeh with maps presened by Zahradrfk and Tse-
lentis (2001). However, PGA maps represen only one of the results usable for
engineeringapplications. Maps of durations, averagedPSA spectra and others
indicators can be implemerted easily

Onewhois interestedin strong motion modelling surely missedthe term directiv-
ity in the whole study. We didn't mertioned it, becausewe had not studied this
e®ectsystematically Howewer looking at the PGA maps generatedfor Athens
1999 earthquake and take into accourt geometry of the faulting, especially po-
sition of hypocerter, one hasto say that directivity is presen. Unlessa robust
synthetic study is made, we would not rather discusthe rate of directivity with
respect to frequency



App endix

Subroutine FRA CTAL

Here we provide subroutine FRACTAL, which generatesin 1% step N; and R;
(seesection 3.2) and in 2" step put the subewerts randomly on the mainfault
so they do not overlap with ead other. The code is also available with more
detail descriptionon e-mailaddress:burjanek@karel.troja.mff.cuni.cz . The
author appreciateyour commerts. In caseof usingthe subroutine, pleasereferto:

Burj $inek, J.: A composite source model with fractal subevent size
distribution, Master Thesis, Dept. of Geophysics, Charles Univ ersity,
Prague, May 2002.

SubroutineFRACTAL is programmedin FORTRAN 90. It needsfunction RAN2
from Presset al. (1992)or someother generatorof random numbersfrom interval
H0; 1i with uniform probability density function. An output is Te SUBXY.DAT,
which has following format:

1.line: Rmain =Rmin Rmain =Rmin

2.line: M

3.line: N1 N> i Ny
5.line: X1+ 1 y1+1 X2 Y2
X .line: X1+ 1 y1+ 1 X2 Y2

. _ P
whereRmain , Rmin , M, Ri andN; werede nedin section3.2and X = i”;l N;+4.
X1, Y1 are coordinates of left upper corner and X,, y, are coordinates of right
bottom corner of appropriate subevert.
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module spol
logical test
integer, allocatable
integer citac
integer  sublenx,subleny,xo,yo
end module

subxy(:,:)

subroutine  FRACTAL(nsubtypes,mainsize,Imax,idum)
! INPUT PARAMETERS:

! nsubtypes - number of the subevents types (in
! mainsize - determines R_main/R_min (see text,
! Imax - determines R_max/R_min(see text,
! idum - this
1

1

1

is seed of random generator
OUTPUT:
output of subroutine fractal is file
use spol
integer nsubtypes
real*8, parameter : Imin=1.d0
real*8 mainsize,Imax
integer, allocatable fault(:,:)
real*8, allocatable rfault(:,:)
integer nsub(nsubtypes),np
integer nsubsize(nsubtypes,2)
real*8 subsize(nsubtypes,2),c
real*8 deltax(nsubtypes)
real*8 koef,rsub(nsubtypes),area
real*8 pom
real*4 ra
integer idum
€=1.98d0

np=int(mainsize/lmin)-1
allocate(fault(0:np,0:np))
allocate(rfault(0:np,0:np))

open(4,status="replace’,form="formatted’ file="subxy.dat’)
subsize=0.d0

do i=1,nsubtypes
if (c/=1.d0) then
deltax(i)=(c**(i-1))*(Imax-Imin)/(((c**nsubtypes)-1)/(
else
deltax(i)=(Imax-Imin)/nsubtypes
endif
if (i/=1) then
subsize(i,:)=subsize(i-1,:)+deltax(i-1)
else
subsize=Imin
endif
enddo

koef=0.d0

do i=1,nsubtypes
koef=koef+deltax(i)/subsize(i,1)

enddo

rsub=((mainsize**2)/(subsize(:,1)**3))*deltax(:)/koef
nsub(:)=nint(rsub(:))
nsubsize=nint(subsize/Imin)

do j=nsubtypes,2,-1
area=(rsub(j)-dfloat(nsub(j)))*subsize(j,1)**2+(subsize(
rsub(j-1)=rsub(j-1)+area/(subsize(j-1,1)*subsize(j-1,2))
nsub(j-1)=nint(rsub(j-1))

enddo

allocate(subxy(sum(nsub),4))
fault=0
subxy=0
citac=0
x0=0
yo=0
do i=nsubtypes,2,-1
do j=1,nsub(i)
citac=citac+1
test=.TRUE.
sublenx=np+1
subleny=np+1
do while (test)
do while (((sublenx+xo)>np))
ra=ran2(idum)

SUBXY.DATdescribed

the text is denoted m)
section 3.1.1)

section 3.1.1)

in Appendix A)

c-1.d0))

j,1)**2-dfloat(nsubsize(j,1))**2)*dfloat(nsub(j))



xo=nint(dfloat(ra)*mainsize)
sublenx=nsubsize(i,1)-1
enddo

do while (((subleny+yo)>np))
ra=ran2(idum)
yo=nint(dfloat(ra)*mainsize)
subleny=nsubsize(i,2)-1
enddo

test=.FALSE.

call control()

if (test) then
sublenx=np+1
subleny=np+1

endif

enddo

fault(xo:(xo+sublenx),yo:(yo+subleny))=i-1

subxy(citac,1)=xo

subxy(citac,2)=yo

subxy(citac,3)=xo+sublenx

subxy(citac,4)=yo+subleny

enddo
enddo

do j=0,np
do i=0,np
if  (fault(j,i)==0)
citac=citac+1
subxy(citac,1)=j
subxy(citac,2)=i
subxy(citac,3)=j
subxy(citac,4)=i
endif
rfault(j,i)=dfloat(fault(j,i))
enddo
enddo

then

|I=sum(nsub)

write(4,*) np+l, np+l

write(4,*) nsubtypes

do i=1,nsubtypes/2
pom=nsub(i)
nsub(i)=nsub(nsubtypes+1-i)
nsub(nsubtypes+1-i)=pom
pom=subsize(nsubtypes+1-i,1)
subsize(nsubtypes+1-i,1)=subsize(i,1)
subsize(i,1)=pom

enddo
nsubsize=int(subsize)
write(4,*)  nsub
write(4,) nsubsize(:,1)
do i=1,l

write(4,*)  subxy(i,:))+1
enddo

deallocate(subxy)
deallocate(fault)
deallocate(rfault)
close(4)

end subroutine

subroutine
use spol

control()

do m=1,citac-1
if  (((xo>=subxy(m,1)).AND.(yo>=subxy(m,2))).AND.((xo<=sub
if  (((xo+sublenx>=subxy(m,1)).AND.(yo>=subxy(m,2))).AND.((
if  (((xo+sublenx>=subxy(m,1)).AND.(yo+subleny>=subxy(m,2)))
if  ((xo>=subxy(m,1)).AND.(yo+subleny>=subxy(m,2))).AND.((
enddo

end subroutine

xy(m,3)).AND.(yo<=subxy(m,4)))) test=.TRUE.
xo+sublenx<=subxy(m,3)).AND.(yo<=subxy(m,4))))

test=.TRUE.

.AND.((xo+sublenx<=subxy(m,3)).AND.(yo+subleny<=subxy(m,4))

xo<=subxy(m,3)).AND.(yo+subleny<=subxy(m,4))))

test=.TRUE.

59

) test=.TRUE.
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