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Ondřej Souček
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Chapter 1

Introduction

Glaciology, as a science studying, in the broadest sense, the behaviour of ice masses un-
der climatical and mechanical loading, has a broad interdisciplinary character. There
are many fields of science relating to glaciology, as for instance, geophysics, material
science, crystallography, meteorology, oceanology but also chemistry or applied mathe-
matics. The subject of glaciology itself covers a large area of interest in time and spatial
scales, including studies on ice crystal or flake growth, modelling of avalanche processes,
flow of mountain glaciers and advance or retreat of large ice shelves and ice sheets during
glacial cycles. The subject of this work is mostly connected with the last subject, that is
modelling physical processes in ice sheets.

Ice sheets are ice masses of continental size, resting on solid land. The Antarctic ice
sheet with the total ice volume of 25.9× 106 km3 (sea-level equivalent of 65 m) being the
largest, and smaller Greenland ice sheet with 2.8 × 106 km3 (7m sea-water equivalent)
represent the most important contemporary ice sheets, however, in the past the Earth has
many times experienced periods of even more extended glaciation. For instance, during
the Last Glacial Maximum 21,000 years ago, an ice sheet covered a large part of North
America, another one rested on the European Alps, northern Europe and Siberia, with
the total ice-sheet volume of approximately 200× 106 km3.

An intense effort has been focused on modelling of time evolution of large ice sheets
during glacial cycles, including various physical processes and features, starting from
purely mechanical models, ending with thermo-mechanically coupled ones. This work
aims at the beginning of ice-sheet modelling, that is at the stage of setting up the model
equations and physical features of the model. In particular, we deal with the model
formulation for the so-called temperate zone of a glacier where meltwater is present and
affects material behaviour.

In the second chapter, we first briefly review the traditional formulation for a poly-
thermal ice sheet, the theoretical concept and model equations which have been widely
used for large-scale ice-sheet modelling.

Since our aim is an alternative formulation of the temperate ice region on the base
of rational thermodynamics of reacting mixtures, the basic concepts of this theory are
outlined in the third chapter, including formulation of the balance laws, exploitation of
the entropy principle and investigation of equilibrium conditions.

In the fourth chapter, we apply the results of the mixture theory to the particular case

1



2 CHAPTER 1. INTRODUCTION

of a 2-component ice-water mixture, being the subject of our interest for the temperate
ice region. The material model is reduced by implementing partial linearization with
respect to the equilibrium state and by constraining the model with an incompressibility
condition. The balance equations are then simplified to a form convenient for numerical
implementation.

In the fifth chapter, we consider a standard ice-sheet configuration and formulate the
boundary and transition conditions for field variables, within the framework of mixture
theory.

In the sixth chapter, the equations describing temperate ice are solved numerically
for a 2-D stationary case, and a simple sensitivity study is performed to show the basic
comparison between the traditional and the new formulation.



Chapter 2

Traditional formulation of glacier
physics

2.1 Introduction

Cold ice

Lithosphere

Temp. ice

z

x,y

Atmosphere
s

CTS

b

F (x,t) = 0

F (x,t) = 0
F (x,t) = 0

Figure 2.1: Sketch of a polythermal ice sheet.

The physical processes governing the behaviour of an ice sheet are of big complexity,
but, for the purpose of large-scale modelling, we can confine ourselves to several important
features. We distinguish two basic zones in a glacier, the cold-ice zone, where the ice
temperature is bellow the pressure-melting point, and the temperate-ice zone, where the ice
temperature is at melting point and a certain amount of water is present, that significantly
affects the thermal and mechanical behaviour of the glacier. The typical geometry of an
ice sheet is depicted in Fig. 2.1.

In this chapter we summarize the traditional formulation of the field equations de-
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4 CHAPTER 2. TRADITIONAL FORMULATION OF GLACIER PHYSICS

scribing the thermo-mechanical behaviour in the cold-ice and temperate-ice zones.

2.2 Cold Ice Zone

In the cold-ice region, the ice is bellow the pressure melting-point and therefore no water
is present. After neglecting the content of salt, debris, and other tracers, cold ice can
be treated as a 1-component material. The continuum approach is adopted to describe
both the thermal and the mechanical behaviour. According to the processes of interest,
i.e. glacier flow on the decadal time scale, ice is described by a non-Newtonian, viscous,
heat conducting fluid. Moreover, the assumption of incompressibility is introduced, in
good agreement with the density-variations observations across the cold-ice regions, (see
Paterson [7]).

The continuum-mechanics description of a 1-component material includes the local
mass balance, the local balance of linear momentum and the local internal-energy balance1

(see e.g. Martinec [2]):

div~v = 0 , (2.1)

ρ~̇v = −grad p + div
◦
T + ρ~gF , (2.2)

ρε̇ = T .. D − div ~q , (2.3)

where ~v is the ice velocity, ρ denotes the ice density, the dot above ~v denotes the material

time derivative, p the pressure, T the Cauchy stress tensor and
◦
T its deviatoric part, ~gF

is the gravity acceleration, ε is the internal energy,

D = {grad~v}sym. =
1

2

(
grad~v + (grad~v)T

)
(2.4)

the stretching tensor, and ~q the heat flux.
The constitutive relations adopted to complete the system of equations are

T = −p1 +
◦
T , (2.5)

ε = cV T , (2.6)

~q = −k(T ) grad T , (2.7)

D = A(T )f (σ)
◦
T , (2.8)

where cV is the specific heat at constant volume2 , k(T ) is the temperature-dependent heat
conductivity of ice, σ is the effective shear stress defined as

σ =

√
1

2
tr(

◦
T)2, (2.9)

1We omit the angular momentum balance which constraints the Cauchy stress tensor to be symmetric,
and the entropy balance, which provides constraints on the constitutive relations. However the choice of
the constitutive relations as listed bellow ((2.5)–(2.8)) automatically satisfy both.

2Hutter [4] claims that cP , i.e. the specific heat at constant pressure, should be introduced instead of
cV , but we do not fully follow his argumentation, and keep cV , according to Fowler and Larson [9].
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A(T ) is the rate factor, f (σ) the creep response function considered in the form

f (σ) = σn−1 . (2.10)

For n = 3, the stress-strain rate relation (2.8) represents the Glen’s flow law. The tem-
perature dependence of A(T ) is usually assumed of the Arrhenius-type,

A(T ) = A exp
(
− Q

kBT

)
, (2.11)

where Q is the activation energy, kB the Boltzmann’s constant and A a constant.

2.3 Temperate Ice Zone

Due to the negative slope of the Clausius-Clapeyron curve of the phase equilibrium be-
tween ice and water, high pressure in deep regions of large glaciers may lead to the presence
of a non-zero water fraction. Such regions are called temperate zones. Although the mass
fraction of water is typically of a value up to 5% there, its presence affects rheological
and transport properties of the surrounding ice. The traditional way of the description of
temperate-ice physics is following (Greve [6]).

Several features of the mixture concept are introduced. The temperate ice is described
by two mass balances, one for the mixture as a whole and one for the water component.
The linear momentum and energy balance are considered only for the mixture as a whole.
Water is treated as a tracer component and its motion relative to the barycenter is de-
scribed by a diffusion (Fickian) type of law. The barycentric velocity is introduced as

~vB =
1

ρ
(ρ1~v1 + ρ2~v2) , (2.12)

where ρ is the mixture density

ρ = ρ1 + ρ2 , (2.13)

subscript (1) stands for water and (2) for ice. The water content w is introduced as

w =
ρ1

ρ
. (2.14)

The diffusive water mass flux ~j, describing the water motion relative to the motion of
barycenter is introduced as

~j = ρw(~v1 − ~vB) . (2.15)

The mixture is assumed to be incompressible, since the total density variations do not
exceed 1%. Then the mixture mass balance and the mixture momentum balance are
postulated as

div~vB = 0 , (2.16)

ρ ˙~vB = −grad p + div
◦
T + ρ~gF , (2.17)
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where again p denotes the pressure, T the Cauchy stress tensor and
◦
T its deviatoric part,

~gF the gravity acceleration. The mass balance for the water component is

∂ρ1

∂t
+ div (ρ1~v1) = M , (2.18)

which is equivalent to
ρẇ = −div~j + M , (2.19)

where M denotes the mass production term. Constitutive equations of the model are
introduced as follows (see Hutter [4]):

T = −p1 +
◦
T , (2.20)

DB = A(T, w)f (σ)
◦
T , (2.21)

~j = −ν grad w , (2.22)

M =
T .. DB

L
, (2.23)

where

DB = {grad~vB}sym. =
1

2

(
grad~vB + (grad~vB)T

)
(2.24)

is the strain tensor relative to the barycentric velocity, A(T,w) is the rate factor (now
dependent also on the water content w), f(σ) the creep response function, defined again
as

f (σ) = σn−1 , (2.25)

with

σ =

√
1

2
tr(

◦
T)2 ; (2.26)

~ν is the diffusivity and L the latent heat of melting of ice.

This has been the traditional approach to describe the temperate-zone physics. How-
ever the constitutive equations are still a subject of discussion and several new modi-
fications of the theory appeared recently (Greve [6]). In the following chapters, we will
attempt to formulate a thermo-mechanical temperate-ice model, strictly by means of ratio-
nal thermodynamics of mixtures, which would involve the transport processes connected
with water diffusion. We will adopt a fully-mixture concept, hoping that a consistent
formulation can be carried out, without an ’ad hoc’ stress – strain-rate relation expressed
in terms of the barycentric velocity. We also hope that all derivations will show the sim-
plifications implicitly involved in the above equations and may serve as a starting point
for possible generalization of the theoretical concept.

Therefore, the main focus of this thesis is the rational-thermodynamics theory of
2-component mixtures. A continuum theory, describes a mixture as a superposition of
continua components. Plausibility of this approach in the case of strictly separated media,
as in our case, ice and water being two always separated phases, is discussed, for example,
in Passman et al. [3], and is enabled by the spatial scale intended for the large-scale
glacier modelling being in question here.

Since the rational thermodynamics of mixtures may not be a known theory to the
reader, we outline it in the next chapter following the textbook by Samohýl [1].



Chapter 3

Rational thermodynamics of
mixtures

3.1 Introduction and basic principles

The mixture theory is based on the continuum-mechanics approach. Its aim is to describe
properties of a mixture and its components, formulate balance laws for them and, use
the entropy principle and other constitutive principles to restrict the class of constitutive
(response) functionals. The formulation of the mixture theory is based on the following
three principles:

• All thermo-mechanical properties of a mixture are derivable from the properties of
its components.

• The behaviour of a particular component is described as if it were isolated from
the rest of the mixture, but includes all possible interactions with the rest of the
mixture.

• The properties of a mixture are governed by the same principles as the properties
of a one-component material.

According to the first principle, the properties of components are first introduced as
independent primitive quantities, the properties of the mixture are then derived. The
second point gives a general idea how to formulate balance laws for components of a
mixture and the third principle constrains the mixture balance laws. They must be
consistent with balance laws for a 1-component material in the following sense. There
should be a straightforward assignment between quantities appearing in a mixture balance
law and in a 1-component material balance law and these quantities should coincide for
a ”1-component mixture”. Hence a 1-component material must be only a special case of
a mixture.

7



8 CHAPTER 3. RATIONAL THERMODYNAMICS OF MIXTURES

3.2 Kinematics of a mixture

The α-component of a mixture is defined by its material body Bα, a set of particles {Xα}.
We express the configuration of this body by a mapping ~κα (see e.g. Martinec [2]):

~κα : Bα → E3

Xα → ~Xα = ~κα(Xα)

}
α = 1 , . . . , n ,

where ~κα represents the reference configuration.
The motion of particles of the α-component is represented by a sufficiently smooth and
invertible mapping ~χα:

~xα = ~χα(Xα, t) = ~χα(~κ−1
α (( ~Xα, t), t) = ~χκα( ~Xα, t) , α = 1 , . . . , n ,

where ~xα is the α-particle position in the present configuration. The reference, frame to
which the vector ~Xα is related, and the present frame, to which ~xα corresponds, need not
coincide. But we will assume that reference frames of all components coincide and that
present frames of all components coincide. The mixture is now defined as an intersection
of present configurations of all its components. Therefore a material particle of a mixture
at position ~x in the present configuration is composed of n component particles, all of
them present at the same position ~xα = ~x, α = 1, . . . , n.

Now all standard kinematic quantities can be defined for each mixture component.
The most important are (see Martinec [2]) :

• deformation gradient:

Fκα = Gradκα~χκα( ~Xα, t) =
∂~χκα( ~Xα, t)

∂ ~Xα

, (Fκα)iJ =
∂ χi

κα( ~Xα, t)

∂ XJ
α

, (3.1)

• second deformation gradient:

Gκα = GradκαFκα =
∂Fκα( ~Xα, t)

∂ ~Xα

, (Gκα)iJK =
∂2χi

κα( ~Xα, t)

∂XJ
α∂XK

α

, (3.2)

• jacobian:
Jκα = detFκα ,

• Cauchy polar decomposition of deformation gradient:1

Fκα = RκαUκα = VκαRκα , (3.3)

(Fκα)iJ = (Rκα)iK(Uκα)KJ = (Vκα)ik(Rκα)kJ ,

where Rκα is a orthogonal tensor and Vκα, Uκα are positive definite and symmetric
tensors, i.e.:

RκαR
T
κα = RT

καRκα = 1 ,

Vκα = VT
κα , Uκα = UT

κα ,

~a ·Vκα · ~a > 0 , ∀ ~a , ~a ·Uκα · ~a > 0 , ∀ ~a ,

1We are using the Einstein summation convention.
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• right and left Cauchy-Green tensors:

Cκα = (Uκα)2 , Bκα = (Vκα)2 , (3.4)

• time and spatial derivatives of a scalar, vector or tensor-valued field in spatial de-
scription, ψα = ψα(~x, t):

∂ψα

∂t
=

∂ψα(~x, t)

∂t
, (3.5)

∂ψα

∂~x
= grad ψα . (3.6)

The second equation has the following meaning:

– for ψα being a scalar quantity:

(grad ψα)i =
∂ψα

∂xi
, (3.7)

– for ψα being a vector:

(grad ~ψα)ij =
∂(~ψα)i

∂xj
, (3.8)

– for ψα being a second-order tensor:

(grad ψα)ijk =
∂(ψα)ij

∂xk
, (3.9)

and likewise for higher-order tensors.

• using the mapping ~x = ~χκα( ~Xα, t) and the inverse mapping ~Xα = ~χ−1
κα(~x, t), we

define:

– material time derivative with respect to the α-component:

ψ̀α

α
=

Dαψα

Dt
=

∂ψα( ~Xα, t)

∂t

∣∣∣∣∣∣
~Xα

, (3.10)

where the superscript in the first term and the subscript at D in the second
term denote the differentiation at fixed ~Xα.
Using ~Xα = ~χ−1

κα(~x, t) and ~x = ~χκγ( ~Xγ, t), it analogously holds:

ψ̀α

γ
=

Dγψα

Dt
=

∂ψα( ~Xα, t)

∂t

∣∣∣∣∣∣
~Xγ

=
∂ψα(~χ−1

κα(~χκγ( ~Xγ, t), t), t)

∂t

∣∣∣∣∣∣
~Xγ

, (3.11)

– referential gradient:

Grad ψα =
∂ψα( ~Xα, t)

∂ ~Xα

, (3.12)
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• α-component velocity:

~vα =
∂~χκα( ~Xα, t)

∂t

∣∣∣∣∣∣
~Xα

, (3.13)

thus for a field quantity expressed in spatial description ψ(~x, t), we have:

ψ̀α =
∂ψ

∂t
+ gradψ · ~vα , ψ̀α =

∂ψ

∂t
+ vi

α

∂ψ

∂xi
, (3.14)

• spatial velocity gradient:

Lα = grad ~vα , (Lα)ij =
∂vi

α

∂xj
, (3.15)

and its symmetric and antisymmetric parts:

– velocity of deformation:

Dα ≡ Lsym.
α =

1

2
(Lα + LT

α) , (3.16)

– spin:

Wα ≡ Lantis.
α =

1

2
(Lα − LT

α) . (3.17)

It will be also convenient to introduce the following quantities:

• diffusion velocity relative to the k-th component ~u(k)
α , k ∈ (1, . . . , n):

~u(k)
α = ~vα − ~vk , α = 1, . . . , n , (3.18)

if the superscript (k) is omitted, the diffusion velocity is relative to the n-th com-
ponent:

~uα = (~vα − ~vn) ⇒ ~un = ~0 ; (3.19)

• spin relative to the k-th component Ω(k)
α , k ∈ (1, . . . , n):

Ω(k)
α = Wα −Wk , α = 1, . . . , n , (3.20)

in particular we also define spin relative to the n-th component Ωα,

Ωα = Ω(n)
α . (3.21)

We will often use the Reynold’s transport theorem:

Following Martinec [2], we can derive the modified Reynold’s transport theorem for a
mixture. Consider a material volume v intersected by a discontinuity surface σ(t) across
which a field variable ψα, α ∈ (1, . . . , n), undergoes a finite jump. Let the points of σ(t)
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move with velocity ~ν. Denoting the parts of the body separated by the surface v+ and
v−, we can derive

Dα

Dt

∫

v

ψα dv =
∫

v\σ(t)

(
∂ψα

∂t
+ div (ψα ⊗ ~vα)

)
dv +

∫

σ(t)

[ψα ⊗ (~vα − ~ν)]+− · ~n da , (3.22)

or, equivalently,

Dα

Dt

∫

v

ψα dv =
∫

v\σ(t)

(
Dαψα

Dt
+ ψα div ~vα

)
dv +

∫

σ(t)

[ψα ⊗ (~vα − ~ν)]+− · ~n da , (3.23)

where the square brackets denote the jump accross the singular surface σ(t), i.e. for an
arbitrary field quantity ϕ, [ϕ]+− = ϕ+ − ϕ−.

We will also use the modified Gauss theorem, which can be derived for a mixture in
the same way as for a one-component material (Martinec [2]):

∫

v\σ(t)

div ψα dv =
∫

s+∪s−

ψα · ~n da−
∫

σ(t)

[ψα]+− · ~n da , (3.24)

where s+ and s− are the parts of the bounding surface separated by the discontinuity
surface σ(t).

In the following sections we will derive the conservation laws or balance laws for mass,
linear and angular momenta, energy and, finally, we will deal with the entropy inequality
in mixtures. We will assume that the material volume can be intersected by a discontinuity
surface σ(t), where any of the material properties may undergo a finite jump.

3.3 Mass balance in a mixture

For each component α in the n-component mixture, we introduce a primitive scalar quan-
tity

• mass density of the α-component in the present configuration:

ρα = ρα(~x, t) ≥ 0 , α = 1, . . . , n ,

so that the total mass of the α-component in material volume v is

mα(v) =
∫

v

ρα dv , (3.25)

• volume rate of mass-change of the α-component:

rα = rα(~x, t) , ~x ∈ v(t) , α = 1, . . . , n ,
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• surface rate of mass-change of the α-component:

rS
α = rS

α(~x, t) , ~x ∈ σ(t) , α = 1, . . . , n ,

so that the total mass change of the α-component, caused by reactions among the
mixture components, in material volume v per unit time is

δmα(v) =
∫

v

rα dv +
∫

σ(t)

rS
α da .

We distinguish

– reacting components:

rϕ 6≡ 0 or rS
ϕ 6≡ 0 , ϕ = 1, . . . , m ,

– non-reacting components:

rω ≡ 0 and rS
ϕ ≡ 0 , ω = m + 1, . . . , n .

The mass balance of the α-component of a mixture in material volume v is postulated:

Dα

Dt

∫

v

ρα dv =
∫

v

rα dv +
∫

σ(t)

rS
α da , α = 1, . . . , n , (3.26)

and the mass balance of a mixture:

n∑

α=1


Dα

Dt

∫

v

ρα dv


 = 0 , (3.27)

using (3.23), we obtain

Dα

Dt

∫

v

ρα dv =
∫

v\σ(t)

(ρ̀α
α + ρα div ~vα) dv +

∫

σ(t)

[ρα(~vα − ~ν)]+− · ~n da ,

which, with the use of (3.26), yields
∫

v\σ(t)

(ρ̀α
α + ρα div ~vα − rα) dv +

∫

σ(t)

(
[ρα(~vα − ~ν)]+− · ~n − rS

α

)
da = 0 .

Since the material volume v was chosen arbitrarily, we can conclude that

ρ̀α
α + ρα div ~vα = rα in v \ σ(t) ,

[ρα(~vα − ~ν)]+− · ~n = rS
α at σ(t) .

(3.28)

Using (3.23) in (3.27), we arrive at

∫

v\σ(t)

n∑

α=1

(ρ̀α
α + ρα div ~vα) dv +

∫

σ(t)

n∑

α=1

[ρα(~vα − ~ν)]+− · ~n da = 0 .
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Since the material volume v was chosen arbitrarily, we conclude that

n∑
α=1

(ρ̀α
α + ρα div ~vα ) = 0 in v \ σ(t) ,

n∑
α=1

[ρα(~vα − ~ν)]+− · ~n = 0 at σ(t) .
(3.29)

By summation of the local mass balances and boundary conditions (3.28) over α, we
obtain

n∑

α=1

(ρ̀α
α + ρα div ~vα − rα) = 0 in v \ σ(t) , (3.30)

n∑

α=1

(
[ρα(~vα − ~ν)]+− · ~n − rS

α

)
= 0 at σ(t) . (3.31)

Subtracting the equations (3.30) and (3.31) from equations in (3.29) yields

n∑
α=1

rα = 0 in v \ σ(t) ,
n∑

α=1
rS
α = 0 at σ(t) .

(3.32)

It is convenient to introduce:

• mass density of a mixture ρ:

ρ =
n∑

α=1

ρα , (3.33)

• mass fraction of the α-component wα:

wα =
ρα

ρ
, α = 1, . . . , n , (3.34)

consequently
n∑

α=1

wα = 1 . (3.35)

3.4 Linear momentum balance for a mixture

Linear momentum of the α-component of a mixture in material volume v is a vector
quantity defined by

~pα(v) =
∫

v

ρα~vα dv , α = 1, . . . , n ,
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The linear momentum balance for the α-component of a mixture is postulated:

Dα

Dt

∫

v

ρα~vα dv =
∫

∂v

Tα · ~n da +
∫

v

ρα
~bα dv +

∫

v

~kα dv

+
∫

v

rα~vα dv +
∫

σ(t)

~fS
α da ,

α = 1, . . . , n , (3.36)

where

• ∫
∂v

Tα · ~n da

expresses all surface forces exerted on the particular α-component at the surface ∂v.
These are:

– inner surface forces
which appear at the part of the surface ∂v, which is inside the mixture volume.
They represent surface forces exerted by the rest of mixture from the outer
side of such a surface segment.

– outer surface forces,
exterior surface forces, exerted from the outer side on the part of the surface
∂v, which is at the same time a part of the mixture boundary.

– interaction surface forces
representing the surface forces exerted by all the other mixture components on
the surface ∂v from the inner side of the volume v.

• ∫
v

ρα
~bα dv

expresses the volume forces (e.g. gravity).

• ∫
v

~kα dv

expresses the interaction volume forces – volume interaction with the rest of the
mixture.

The interaction and inner surface forces together with interaction volume forces
enable us to describe the mechanical interaction among the mixture components.
For instance, for an ice-water mixture, these quantities model the volume-averaged
force exerted by flowing water on the surrounding ice. Thus, despite the fact that
the exact geometrical configuration of the water tunnels, cavities, etc, is not spec-
ified, this concept gives us a tool to handle the interactions in a volume-averaged
sense, which is sufficient for certain time and spatial scales behaviour.

• ∫
v

rα~vα dv

is the linear momentum induced by composition changes, e.g. for a two-component
ice-water mixture, both components are considered as continua moving with dif-
ferent velocities, freezing of certain water amount or melting of ice, described by
density changes, therefore, results in appropriate linear momentum changes.
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• ∫
σ(t)

~fS
α da

is the linear-momentum surface-production term. We consider this term because
we may identify a singular surface in a glacier, where melting occurs. Thus for
particular mixture components, the surface behaves as a source of mass, linear and
angular momenta, energy and entropy, respectively.

For quantity ϕα of the α-component, using (3.23) and (3.28) we can write:

Dα

Dt

∫

v

ραϕα dv

=
∫

v\σ(t)

(
Dα(ραϕα)

Dt
+ ραϕα div ~vα

)
dv +

∫

σ(t)

[ραϕα ⊗ (~vα − ~ν)]+− · ~n da

=
∫

v\σ(t)

{ϕα (ρ̀α
α + ραdiv ~vα) + ραϕ̀α

α} dv +
∫

σ(t)

[ραϕα ⊗ (~vα − ~ν)]+− · ~n da

=
∫

v\σ(t)

ϕαrα dv +
∫

v\σ(t)

ραϕ̀α
α dv +

∫

σ(t)

[ραϕα ⊗ (~vα − ~ν)]+− · ~n da .

(3.37)

Particularly for ϕα = ~vα, we obtain

Dα

Dt

∫

v

ρα~vα dv =
∫

v\σ(t)

~vαrα dv +
∫

v\σ(t)

ρα~̀vα

α
dv +

∫

σ(t)

[ρα~vα ⊗ (~vα − ~ν)]+− · ~n da .

Substituting this into (3.36) yields

∫

v\σ(t)

ρα~̀vα

α
dv +

∫

σ(t)

[ρα~vα ⊗ (~vα − ~ν)]+− · ~n da =
∫

∂v

Tα · ~n da +
∫

v\σ(t)

ρα
~bα dv

+
∫

v\σ(t)

~kα dv +
∫

σ(t)

~fS
α da .

Applying the modified Gauss theorem (3.24) to the first integral on the right-hand side
gives

~0 =
∫

v\σ(t)

(ρα~̀vα

α − div Tα − ρα
~bα − ~kα) dv

−
∫

σ(t)

(
[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n + ~fS

α

)
da . (3.38)

Since the volume v was chosen arbitrarily, we conclude that

ρα~̀vα

α
= div Tα + ρα

~bα + ~kα in v \ σ(t) ,

~0 = [Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n + ~fS
α at σ(t) .

(3.39)
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The balance of linear momentum of a mixture is postulated as

n∑

α=1

Dα

Dt

∫

v

ρα~vα dv =
n∑

α=1

∫

∂v

Tα · ~n da +
n∑

α=1

∫

v\σ(t)

ρα
~bα dv . (3.40)

Again, applying (3.37) to the left-hand side and (3.24) to the first term on the right-hand
side, we obtain

~0 =
∫

v\σ(t)

n∑

α=1

(
ρα~̀vα

α
+ rα~vα − div Tα − ρα

~bα

)
dv +

+
∫

σ(t)

[
n∑

α=1

{ρα~vα ⊗ (~vα − ~ν)−Tα}
]+

−
· ~n da . (3.41)

Since the material volume v was arbitrary, we conclude that

~0 =
n∑

α=1

(
ρα~̀vα

α
+ rα~vα − div Tα − ρα

~bα

)
in v \ σ(t) ,

~0 =
[

n∑
α=1

{ρα~vα ⊗ (~vα − ~ν)−Tα}
]+

−
· ~n at σ(t) .

(3.42)

Summing up the balance laws and boundary conditions (3.39) over all components yields

n∑

α=1

(
ρα~̀vα

α − div Tα − ρα
~bα − ~kα

)
= ~0 in v \ σ(t) ,

n∑

α=1

(
[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n + ~fS

α

)
= ~0 at σ(t) ,

which with the use of (3.42) implies

n∑
α=1

(~kα + rα~vα) = ~0 in v \ σ(t) .
n∑

α=1

~fS
α = ~0 at σ(t) .

(3.43)

3.5 Angular momentum balance for a mixture

The angular momentum of the α-component of a mixture in material volume v relative
to a place ~y0 is defined as a second-order tensor

lα(v) =
∫

v

(~x− ~y0) ∧ ρα~vα dv , α = 1, . . . , n ,

where ~y0 is assumed to be a constant vector and the operator ∧ is defined by2

~a ∧~b = ~a⊗~b−~b⊗ ~a , (~a ∧~b)ij = (aibj − ajbi) , (3.44)

2⊗ denotes the tensor (dyadic) product
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for two vectors and
(~a ∧B)ijk ≡ aiAjk − ajAik ,

for a vector and a second-order tensor.

The angular momentum balance for the α-component in material volume v is postulated

Dα

Dt

∫

v

(~x− ~y0) ∧ ρα~vα dv =
∫

∂v

(~x− ~y0) ∧Tα · ~n da +
∫

v

(~x− ~y0) ∧ ρα
~bα dv

+
∫

v

(~x− ~y0) ∧ (~kα + rα~vα) dv +
∫

σ(t)

(~x− ~y0) ∧ ~fS
α da ,

α = 1, . . . , n . (3.45)

By (3.37) we have

Dα

Dt

∫

v

(~x− ~y0) ∧ ρα~vα dv =
∫

v\σ(t)

ρα

(
Dα(~x− ~y0)

Dt
∧ ~vα + (~x− ~y0) ∧ ~̀vα

α
)

dv +

+
∫

v\σ(t)

rα(~x− ~y0) ∧ ~vα dv +
∫

σ(t)

[(ρα(~x− ~yo) ∧ ~vα)⊗ (~vα − ~ν)]+− · ~n da .

Since
Dα(~x− ~y0)

Dt
∧ ~vα = ~vα ∧ ~vα = 0 ,

and applying the Gauss theorem3 (3.24) on the first surface integral in (3.45), we have



∫

∂v

(~x− ~y0) ∧Tα · ~n da




ij

=
∫

∂v

{
(xi − yi

0)T
jk
α − (xj − yj

0)T
ik
α

}
nk da

=
∫

v\σ(t)

∂

∂xk

{
(xi − yi

0)T
jk
α − (xj − yj

0)T
ik
α

}
dv

+
∫

σ(t)

[
(xi − yi

0)T
jk
α − (xj − yj

0)T
ik
α

]+

− nk da

=




∫

v\σ(t)

(TT
α −Tα) + (~x− ~y0) ∧ div Tα dv




ij

+




∫

σ(t)

[(~x− ~y0) ∧Tα]+− · ~n da




ij

.

Equation (3.45) can be written as follows:

0 =
∫

v\σ(t)

(Tα −TT
α) dv +

∫

v\σ(t)

(~x− ~y0) ∧
{
ρα~̀vα

α − div Tα − ~kα − ρα
~bα

}
dv +

+
∫

σ(t)

(~x− ~y0) ∧
(
[ρα~vα ⊗ (~vα − ~ν)−Tα]+− · ~n − ~fS

α

)
da ,

3We have chosen the component description for the sake of brevity.
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where in the last term on the right-hand side the continuity of (~x − ~y0) at the singu-
lar surface σ(t) has been considered. Inspecting the linear momentum balance and the
boundary condition (3.39), we can see that the second and the third integral vanish, so
we conclude that ∫

v\σ(t)

(Tα −TT
α) dv = 0 . (3.46)

Since the material volume v was chosen arbitrarily, we obtain

Tα = TT
α in v \ σ(t) . (3.47)

The balance of angular momentum of a mixture in material volume v is postulated in
the following form:

n∑

α=1

Dα

Dt

∫

v

(~x−~y0)∧ρα~vα dv =
n∑

α=1

∫

∂v

(~x−~y0)∧Tα ·~n da +
n∑

α=1

∫

v

(~x−~y0)∧ρα
~bα dv . (3.48)

Applying (3.37), we derive

n∑

α=1

Dα

Dt

∫

v

(~x− ~y0) ∧ ρα~vα dv =
∫

v\σ(t)

(~x− ~y0) ∧
(

n∑

α=1

ρα~̀vα

α
)

dv +

+
∫

v\σ(t)

(~x− ~y0) ∧
(

n∑

α=1

rα~vα

)
dv +

∫

σ(t)

[
(~x− ~y0) ∧

n∑

α=1

{ρα~vα ⊗ (~vα − ~ν)}
]+

−
· ~n da .

Following the procedure for a one-component body, we obtain

n∑

α=1

∫

∂v

(~x− ~y0) ∧Tα · ~n da =
∫

v\σ(t)

n∑

α=1

(TT
α −Tα) dv +

∫

v\σ(t)

(~x− ~y0) ∧ div (
n∑

α=1

Tα) dv +

+
∫

σ(t)

[
(~x− ~y0) ∧

n∑

α=1

Tα

]+

−
· ~n da . (3.49)

After substituting this into (3.48) and rearranging the terms, we arrive at
∫

v\σ(t)

n∑

α=1

(Tα −TT
α) dv +

∫

v\σ(t)

(~x− ~y0) ∧
n∑

α=1

{
ρα~̀vα

α
+ rα~vα − div Tα − ρα

~bα

}
dv +

+
∫

σ(t)

(~x− ~y0) ∧
[

n∑

α=1

ρα~vα ⊗ (~vα − ~ν)−Tα

]+

−
· ~n da = 0 ,

where we have used the continuity of (~x− ~y0) across the singular surface σ(t). In view of
(3.42), we finally obtain the angular momentum balance for a mixture

∫

v\σ(t)

n∑

α=1

(Tα −TT
α) dv = 0 , (3.50)

but this is a trivial result of the angular momentum balance for components (3.47).
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3.6 Energy balance of a mixture

To formulate the energy-balance principle, we first introduce the following quantities:

• internal energy εα

• partial heat flux ~qα

• internal heating Qα

• volume interaction energy eα

• surface energy production eS
α

The energy balance for the α-component of a mixture in material volume v is postulated
as

Dα

Dt

∫

v

ρα(εα +
1

2
~v 2

α ) dv =
∫

∂v

~vα ·Tα · ~n da +
∫

v

ρα
~bα · ~vα dv +

∫

v

~kα · ~vα dv

−
∫

∂v

~qα · ~n da +
∫

v

Qα dv +
∫

v

rα(εα +
1

2
~v 2

α ) dv

+
∫

v

eα dv +
∫

σ(t)

eS
α da , α = 1, . . . , n . (3.51)

The terms additionally appeared in (3.51) compared to the energy balance of a one-
component material (see e.g. Samohýl [1]) are

• ∫
v\σ(t)

~kα · ~vα dv

is the power produced by the interaction volume force ~kα,

• ∫
v\σ(t)

eα dv

is the volume interaction power,

• ∫
σ(t)

eS
α da

is the energy production at the singular surface σ(t),

• ∫
v\σ(t)

rα(εα + 1
2

~v 2
α ) dv

is the rate of energy change due to compositional changes.

In handling of (3.51), we proceed in a way analogous to the previous balance laws. First,
we make use of the formula (3.37) and rewrite the time derivative of the left-hand side of
(3.51):

Dα

Dt

∫

v

ρα(εα +
1

2
~v 2

α ) dv =
∫

v\σ(t)

ρα(ὲα
α + ~vα · ~̀vα

α
) dv +

∫

v\σ(t)

rα(εα +
1

2
~v 2

α ) dv +

+
∫

σ(t)

[
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)
]+

−
· ~n da . (3.52)



20 CHAPTER 3. RATIONAL THERMODYNAMICS OF MIXTURES

We now use the Gauss theorem (3.24) and express the surface integral as4

∫

∂v

~vα ·Tα · ~n da =
∫

∂v

vi
αT ij

α nj da =
∫

v\σ(t)

∂

∂xj
(vi

αT ij
α ) dv +

∫

σ(t)

[
vi

αT ij
α

]+

− nj da

=
∫

v\σ(t)

∂vi
α

∂xj
T ij

α dv +
∫

v\σ(t)

vi
α

∂T ij
α

∂xj
dv +

∫

σ(t)

[
vi

αT ij
α

]+

− nj da

=
∫

v\σ(t)

Lα
.. Tα dv +

∫

v\σ(t)

~vα · div Tα dv +
∫

σ(t)

[~vα ·Tα]+− · ~n da ,

(3.53)

where Lα = grad ~vα is the velocity gradient and the symbol .. denotes the double-dot
product of second-order tensors:

A .. B ≡ Aij Bij. (3.54)

Analogously, from the Gauss theorem (3.24), we obtain

∫

∂v

~qα · ~n da =
∫

v\σ(t)

div ~qα dv +
∫

σ(t)

[qα]+− · ~n da . (3.55)

Substituting (3.52), (3.53) and (3.55) into (3.51) yields

0 =
∫

v\σ(t)

{
ραὲα

α −Tα
.. Lα + div ~qα −Qα − eα + ~vα · (ρα~̀vα

α − div Tα − ρα
~bα − ~kα)

}
dv

+
∫

σ(t)

([
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα + ~qα

]+

−
· ~n − eS

α

)
da .

With the help of the linear momentum balance of the α-component (3.39), this equation
further reduces to

0 =
∫

v\σ(t)

{ραὲα
α −Tα

.. Lα + div ~qα −Qα − eα} dv

+
∫

σ(t)

([
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα + ~qα

]+

−
· ~n − eS

α

)
da .

Since the material volume v was chosen arbitrarily, we conclude that

ραὲα
α = Tα

.. Dα − div ~qα + Qα + eα in v \ σ(t) ,

eS
α =

[
ρα(εα + 1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα + ~qα

]+

− · ~n at σ(t) ,

(3.56)

4To make the derivation transparent, we use the componental description.
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where we have used the symmetry of the Cauchy stress tensor to write

Tα
.. Lα = Tα

.. (Lsym.
α + Lantis.

α ) = Tα
.. Lsym.

α = Tα
.. Dα . (3.57)

Now we postulate the energy balance of a mixture
n∑

α=1

Dα

Dt

∫

v

ρα(εα +
1

2
~v 2

α ) dv =
n∑

α=1

∫

∂v

~vα · Tα · ~n da +
n∑

α=1

∫

v

~vα · ρα
~bα dv −

−
∫

∂v

~q · ~n da +
∫

v

Q dv , (3.58)

where we have defined

• total heat flux ~q

~q =
n∑

α=1

~qα , (3.59)

• total internal heating Q

Q =
n∑

α=1

Qα . (3.60)

Similarly to (3.52), the left-hand side of (3.58) reads

n∑

α=1

Dα

Dt

∫

v

ρα(εα +
1

2
~v 2

α ) dv =
∫

v\σ(t)

n∑

α=1

ρα(ὲα
α + ~vα · ~̀vα

α
) dv +

+
∫

v\σ(t)

n∑

α=1

rα(εα +
1

2
~v 2

α ) dv +
∫

σ(t)

n∑

α=1

[
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)
]+

−
· ~n da . (3.61)

With the help of (3.53) and (3.57), the surface integral on the right-hand side of (3.58) is

n∑

α=1

∫

∂v

~vα · Tα · ~n da =
∫

v\σ(t)

n∑

α=1

(Dα
.. Tα) dv +

∫

v\σ(t)

n∑

α=1

(~vα · div Tα) dv +

+
∫

σ(t)

n∑

α=1

[~vα ·Tα]+− · ~n da . (3.62)

Also, from the Gauss theorem (3.24), we have
∫

∂v

~q · ~n da =
∫

v\σ(t)

div ~q dv +
∫

σ(t)

[q]+− · ~n da . (3.63)

Substituting (3.61), (3.62) and (3.63) into (3.58) gives

0 =
∫

v\σ(t)

(
n∑

α=1

{
ραὲα

α −Tα
.. Dα + ~vα · (ρα~̀vα

α − div Tα − ρα
~bα)

}
+ div ~q −Q

)
dv +

∫

v\σ(t)

n∑

α=1

{
rα(εα +

1

2
~v 2

α )
}

dv +
∫

σ(t)

[
n∑

α=1

{
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα

}
+ ~q

]+

−
· ~n da .
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The term in parenthesis standing at ~vα· in the first volume integral is equal to ~kα due to
the linear momentum balance (3.39). Finally, postulating, that this result is valid for any
arbitrary material volume v , we get

0 =
n∑

α=1

{
ραὲα

α −Tα
.. Dα + ~vα · ~kα + rαεα + 1

2
rα~v

2
α

}
+ div ~q −Q in v \ σ(t) ,

0 =
[

n∑
α=1

{
ρα(εα + 1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα

}
+ ~q

]+

−
· ~n at σ(t) .

(3.64)

By summation of (3.56), we obtain

0 =
n∑

α=1

{ραὲα
α −Tα

.. Dα + div ~qα −Qα − eα} ,

0 =
n∑

α=1

([
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα + ~qα

]+

−
· ~n − eS

α

)
.

Subtracting these equation from (3.64) and with the use of (3.59) and (3.60) yields

n∑

α=1

{
eα + ~vα · ~kα + rαεα +

1

2
rα~v

2
α

}
= 0 in v \ σ(t) , (3.65)

n∑

α=1

eS
α = 0 at σ(t) . (3.66)

For the following, we express the first equation in terms of the diffusion velocity (3.19)
(~uα = ~vα − ~vn) as:

n∑

α=1

~vα · ~kα +
1

2

n∑

α=1

rα~v
2

α

=
n∑

α=1

(~vn + ~uα) · ~kα +
1

2

n∑

α=1

rα (~v 2
n + 2~vn · ~uα + ~u 2

α )

= ~vn ·
n∑

α=1

(~kα + rα ~uα︸︷︷︸
~vα−~vn

) +
n∑

α=1

~uα · ~kα +
1

2
~v 2

n

n∑

α=1

rα +
1

2

n∑

α=1

rα~u 2
α

= ~vn ·
n∑

α=1

(~kα + rα~vα) − 1

2
~v 2

n

n∑

α=1

rα +
n∑

α=1

~uα · ~kα +
1

2

n∑

α=1

rα~u 2
α

=
n∑

α=1

~uα · ~kα +
1

2

n∑

α=1

rα~u 2
α

=
n−1∑

β=1

~uβ · ~kβ +
1

2

n−1∑

β=1

rβ~u
2

β , (3.67)

where we have used the constraints
n∑

α=1
rα = 0,

n∑
α=1

(~kα + rα~vα) = ~0, ~un = ~0, according to

(3.32), (3.43) and (3.19), respectively.
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To conclude, the energy-balance of a mixture can be rewritten as

0 =
n∑

α=1
{eα + rαεα}+

n−1∑
β=1

{
~uβ · ~kβ + 1

2
rβ~u

2
β

}
in v \ σ(t) ,

0 =
n∑

α=1
eS

α at σ(t) .

(3.68)
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3.7 Entropy balance in a mixture

We introduce new quantities:

• entropy density sα,

• absolute temperature T ,

and postulate the entropy balance (the Clausius-Duham) inequality of a mixture in ma-
terial volume v

n∑

α=1

Dα

Dt

∫

v

ραsα dv ≥ −
∫

∂v

1

T
~q · ~n da +

∫

v\σ(t)

Q

T
dv . (3.69)

Making use of (3.37) and the Gauss theorem (3.24), we arrive at

0 ≤
∫

v\σ(t)

{
n∑

α=1

ραs̀α
α +

n∑

α=1

rαsα + div

(
~q

T

)
− Q

T

}
dv +

+
∫

σ(t)

[
n∑

α=1

ραsα(~vα − ~ν) +
~q

T

]+

−
· ~n da . (3.70)

Since the material volume v was chosen arbitrarily, we may conclude that

n∑

α=1

ραs̀α
α +

n∑

α=1

rαsα + div

(
~q

T

)
− Q

T
≥ 0 in v \ σ(t) , (3.71)

[
n∑

α=1

ραsα(~vα − ~ν) +
~q

T

]+

−
· ~n ≥ 0 at σ(t) . (3.72)

Now we employ the energy balance of a mixture (3.64) and the formula (3.67) to express

div ~q −Q = −
n∑

α=1

ραὲα
α −

n∑

α=1

rαεα +
n∑

α=1

Dα
.. Tα −

n−1∑

β=1

~uβ · ~kβ − 1

2

n−1∑

β=1

rβ~u
2

β .

Substituting this into the entropy inequality (3.71) yields

0 ≤ 1

T



−

n∑

α=1

ραὲα
α −

n∑

α=1

rαεα +
n∑

α=1

Dα
.. Tα −

n−1∑

β=1

~uβ · ~kβ − 1

2

n−1∑

β=1

rβ~u
2

β



 +

+
n∑

α=1

ραs̀α
α +

n∑

α=1

rαsα − 1

T 2
grad T · ~q in v \ σ(t) . (3.73)

Multiplying this inequality with −T and introducing a new field variable

• free energy of the α-component

fα = εα − Tsα , α = 1, . . . , n , (3.74)
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gives the Clausius-Duham inequality in the following form

0 ≥ n∑
α=1

ραf̀α

α
+

n∑
α=1

rαfα +
n∑

α=1
ραsαT̀ α + T−1grad T · ~q − n∑

α=1
Dα

.. Tα

+
n−1∑
β=1

~kβ · ~uβ + 1
2

n−1∑
β=1

rβ~u
2

β in v \ σ(t) .

(3.75)

3.8 Constitutive equations of a mixture

Note: It is not aim of this section to provide an exhaustive description of the constitu-
tive theory of mixtures, since it would require much more effort and moreover it is not a
subject of this text. However, the basic concepts have to be outlined to enable following
derivations. This section, more than any other in this chapter, would probably require
further reading, e.g. the textbook by Samohýl [1]).

The independent balance laws listed above, namely the balance of mass of components
and the mixture, the balance of linear momenta of components and the mixture, the
balance of angular momenta of components and the balance of energy of the mixture,
together with the entropy inequality, do not suffice to determine the thermo-mechanical
behaviour of the mixture5. The missing equations should specify the material class by
adding new relations among the kinematic, mechanical and thermal field variables. This
task is handled by the constitutive theory.

We define a process as a set of all the fields that appear in the theory:

χα(Xα, t), ρα(Xα, t), T (Xα, t), (3.76)

rα(~x, t), εα(~x, t), sα(~x, t), ~q(~x, t), ~kα(~x, t), Tα(~x, t), (3.77)

Q(~x, t), ~bα(~x, t), α = 1, . . . , n , (3.78)

and a thermodynamic process as the process, which satisfies the mass balance of react-
ing components, the linear momenta balance of components and the energy balance of
mixture. Note: The remaining balance laws will be satisfied by the use of the following
principles of the constitutive theory, namely by the principle of determinism and by the
entropy principle.

The constitutive theory is based on several axioms, which will be briefly mentioned
together with the most important conclusions they provide.

5The angular momentum balance of the mixture (of non-polar components) follows from the balance
of its components, it is therefore not independent. The energy balance for components need not be
considered, if all the components have the same temperature. Then the entropy inequality does not
constrain interaction energies eα, and variables ~qα and Qα appear in the rest of balance laws only in ~q,
and Q, respectively (see Samohýl [1]).
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• The principle of determinism
postulates that the constitutive (response) functionals:

rα, εα, sα, ~q, ~kα, Tα, α = 1, . . . , n , (3.79)

at a given place ~x and at present time t, depend on the thermo-kinetic process,
i.e. fields of motion (relative to the configuration κγ), density of components and
temperature:

~χκγ(~Yγ, τ), ργ(~Yγ, τ), T (~Yγ, τ) , τ ≤ t, γ = 1, . . . , n , (3.80)

for which the mass balance of non-reacting components and mixture, the linear
momentum balance of mixture and the angular momenta balance of components
are satisfied.

• The principle of local action
states, that the responses (3.79) for a material particle at ~x are most affected by
the particles, being at present time t at place ~x and in its nearest neighborhood.

• The principle of differential memory
states that the responses (3.79) are most affected by values of fields (3.80) at present
time and in the nearest past.

The last two principles enable to reduce the functional form of (3.79) to a function of
the Taylor expansion series of the fields (3.80). The order of the expansion specifies a
particular material class.

• The principle of equipresence
states that a set of independent variables, i.e. appropriate Taylor expansion terms
of (3.80), is the same for all response functionals (3.79) unless other constitutive
principles constrain that.

In particular, we are interested in the material class called a mixture of non-simple ma-
terials with differential memory:

{rψ, εα, sα, ~q,~kβ,Tα} = Fκ[~x,Fκγ,Gκγ,Lγ, ~vγ, ρϕ,~hϕ, T,~g, Xγ, t]

ψ = 1, . . . ,m− 1; ϕ = 1, . . . , m; β = 1, . . . , n− 1; α, γ = 1, . . . , n ,

where we denoted:

– ~x . . . present position of the material particle,
– Fκγ . . . deformation gradient – see (3.1),
– Gκγ . . . second deformation gradient – see (3.2),
– Lγ . . . velocity gradient – see (3.15),
– ~vγ . . . velocity of a material particle,
– ρϕ . . . density of a reacting component,

– ~hϕ . . . density gradient of a reacting component,

~hϕ = grad ρϕ(~x, t) , (3.81)
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– T . . . absolute temperature,
– ~g . . . temperature gradient,

~g = grad T (~x, t) , (3.82)

– Xγ . . . material particle,
– t . . . present time,
– m . . . number of reacting components, i.e. rε 6≡ 0 for ε ∈ (1 . . .m).

• The principle of objectivity
states that the shape of constitutive functionals Fκ does not depend on a change of
the frame. The general relation of two Cartesian frames can be expressed as6:

~x∗ = ~c(t) + Q(t)~χα( ~Xα, t) , (3.83)

and
t∗ = t + b , (3.84)

where
Q(t) ∈ Orth : Q(t)QT (t) = QT (t)Q(t) = 1 . (3.85)

The velocity then transforms as

~v∗α = Q(t)~vα + ~̇c + Λ(~x∗ − ~c) , with Λ = Q̇QT . (3.86)

The principle of objectivity asserts that

{rψ, εα, sα,Q~q,Q~kβ,QTαQ
T} =

Fκ[~c + Q~x,QFκγ,QGκγ,QLγQ
T + Λ,Q~vγ + ~̇c + ΛQ~x, ρϕ,Q~hϕ, T,Q~g,Xγ, t + b],

for any arbitrary scalar b, vectors ~c and ~̇c, orthogonal tensor Q and antisymmet-
ric tensor Λ. It can be shown, see Samohýl [1], that this constraint reduces the
dependence of the constitutive functionals to the following form

{rψ, εα, sα, ~q,~kβ,Tα} = Fκ[Fκγ,Gκγ,Dγ,Ωδ, ~uδ, ρϕ,~hϕ, T,~g, Xγ] (3.87)

ψ = 1, . . . , m− 1; ϕ = 1, . . . , m; β, δ = 1, . . . , n− 1; α, γ = 1, . . . , n ,

with considering

{rψ, εα, sα,Q~q,Q~kβ,QTαQ
T} =

Fκ[QFκγ,QGκγ,QDγQ
T ,QΩδQ

T ,Q~uδ, ρϕ,Q~hϕ, T,Q~g,Xγ] , (3.88)

for any orthogonal tensor Q.

Analogously to a one-component materials, we can deal with changes of the reference
configuration and introduce symmetry groups of a mixture:

6Vectors are considered here as triplets of coordinates related to a ”static” frame.
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– for a reacting component, ε ∈ (1, . . . ,m), we define the symmetry group Gκε

(H,J) ∈ Gκε ⇐⇒ Fκ[Fκε,Gκε, Θε, Xε] = Fκ[(Fκε,Gκε) ◦ (H,J), Θε, Xε] , (3.89)

where H is a regular second-order tensor and J is a third-order tensor symmetric in
last two indices. For the sake of brevity, we denoted

Θε = [Fκγ 6=ε,Gκγ 6=ε,Dγ,Ωδ, ~uδ, ρϕ,~hϕ, T,~g, Xγ 6=ε] ,

γ = 1, . . . , n; δ = 1, . . . , n− 1; ϕ = 1, . . . , m .

Let g be the group of all ordered couples (P,K) of arbitrary regular second-order
tensors P and arbitrary third-order tensors K, symmetric in the last two indices.
The group operation ◦ is defined as

(P3,K3) = (P2,K2) ◦ (P1,K1) ,

where
P3 = P2P1, K3 = C(K2 ⊗P1 ⊗P1) + P2K1 .

The contracting operator C is defined as

C(A⊗B⊗D)ijk = AilmBljDmk .

The inverse of group g is defined as

(P,K)−1 = (P−1,K−1) , with K−1 = −P−1C(K⊗P−1⊗P−1) . (3.90)

– for a non-reacting component, ε ∈ (m + 1, . . . , n), the definition of the symmetry
group is the same as for a reacting component,

(H,J) ∈ Gκε ⇐⇒ Fκ[Fκε,Gκε, Θε, Xε] = Fκ[(Fκε,Gκε) ◦ (H,J), Θε, Xε] , (3.91)

but, in addition, the tensors H and J have to satisfy the relations

| detH | = 1 . . . H is unimodular ,

and
tr(H−1J) + ~kκε(H− 1) = ~0 , (3.92)

where
~kκε = ρ−1

κε Gradκερκε , (3.93)

coming from the constraint on the set of reference configurations representing the
material symmetry of non-reacting components:

ρκε = ρλε , Gradκερκε = Gradλερλε , ε ∈ (m + 1, . . . , n) ,

which states that we are investigating the symmetry properties only in reference
configurations with the same referential density and density gradient (at the given
material point).
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Thus for any component ε of the mixture, reacting or non-reacting, we have defined a
symmetry group Gκε with respect to the reference configuration κε. When the reference
configuration is changed to λε, the symmetry group changes according to the Noll’s rule:

Gλε = (Pε,Kε) ◦ Gκε ◦ (Pε,Kε)
−1 .

• The entropy principle
The balance of entropy introduces additional constraints on the constitutive func-
tionals.

The entropy principle, according to the interpretation of Coleman and Noll, asserts
that the constitutive functionals are such, that the reduced entropy inequality (3.75)
is satisfied for all admissible thermodynamic processes – thermodynamic processes,
taking place in a mixture of non-simple materials with differential memory and con-
stitutive equations (3.87), (3.88), for which the following balance laws are satisfied:
the mass balance of reacting and non-reacting components and the mixture, lin-
ear momenta balance of components and the mixture, angular momenta balance of
components and the energy balance of the mixture.

The reduced entropy inequality for the non-simple material with differential memory has
this form:

0 ≥
n∑

α=1

n∑

γ=1

ρα
∂fα

∂Fγ

.. F̀α
γ +

n∑

α=1

n∑

γ=1

ρα
∂fα

∂Gγ

.. G̀α
γ +

n∑

α=1

n∑

γ=1

ρα
∂fα

∂Dγ

.. D̀α
γ

+
n∑

α=1

n−1∑

δ=1

ρα
∂fα

∂Ωδ

.. Ὼα
δ +

n∑

α=1

n−1∑

δ=1

ρα
∂fα

∂~uδ

· ~̀uδ

α
+

n∑

α=1

m∑

ϕ=1

ρα
∂fα

∂ρϕ

ρ̀α
ϕ

+
n∑

α=1

m∑

ϕ=1

ρα
∂fα

∂~hϕ

· ~̀h
α

ϕ +
n∑

α=1

ρα
∂fα

∂~g
· ~̀gα

+
n∑

α=1

ρα

(
∂fα

∂T
+ sα

)
T̀α

+
m−1∑

ψ=1

(fψ − fm)rψ +
1

T
~q · ~g −

n∑

α=1

Tα
.. Dα +

n−1∑

β=1

~kβ · ~uβ

+
1

2

m−1∑

ψ=1

(~u 2
ψ − ~u 2

m)rψ .

This inequality can then be rewritten by expanding the material time derivatives ψ̀γ
α,

where ψα stands for Fα,Gα,Dα,Ωα, ~uα, ρα,~hα, respectively, to a form, containing only
time derivatives of the form ψ̀α

α. The resulting inequality is very complicated and for sake
of brevity we omit it here (see Samohýl [1]).
Several new quantities are introduced:

– specific free energy of a mixture

f =
n∑

α=1

ρα

ρ
fα , (3.94)

– specific entropy of a mixture

s =
n∑

α=1

ρα

ρ
sα , (3.95)
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– chemical potential gϕ and quantity ~pϕ

gϕ =
∂(ρf)

∂ρϕ

, ~pϕ =
∂(ρf)

∂~hϕ

, ϕ = 1, . . . , m . (3.96)

The rewritten entropy inequality (Samohýl [1]) depends on several independent vari-
ables only linearly, but the entropy principle asserts that the inequality is satisfied for
all admissible thermodynamic processes, i.e. for any arbitrary choices of the independent
variables. Therefore coefficients standing at these ”linear” variables must vanish. Namely:

– at ∂T
∂t

:
∂f

∂T
= −s , (3.97)

– at ∂~g
∂t

:
∂f

∂~g
= ~0 , (3.98)

– at (~̀v
δ

δ − ~̀v
n

n) :
∂f

∂~uδ

= ~0 , δ = 1, . . . , n− 1 , (3.99)

– at
`

(F̀)
γ

γ:

∂f

∂Dγ

= 0 ,
∂f

∂Ωδ

= 0 , γ = 1, . . . , n; δ = 1, . . . , n− 1 . (3.100)

Thus the free energy of a mixture depends only on

f = f(Fγ,Gγ, ρϕ,~hϕ, T ) , (3.101)

so does then, according to (3.96):

gν = gν(Fγ,Gγ, ρϕ,~hϕ, T ) , ~pν = ~pν(Fγ,Gγ, ρϕ,~hϕ, T ) , (3.102)

γ = 1, . . . , n , ν = 1, . . . , m ,

and due to (3.97) also

s = s(Fγ,Gγ, ρϕ,~hϕ, T ) . (3.103)

Since the definition of the free energy f (3.94), with the use of (3.74), gives

f = ε− Ts , (3.104)

we can immediately write that

ε = ε(Fγ,Gγ, ρϕ,~hϕ, T ) . (3.105)
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– at grad ~g:

Aij + Aji = 0 , (3.106)

where

Aij =
n−1∑

δ=1

ρδ
∂fδ

∂gi
uj

δ +
m−1∑

ψ=1

(pj
ψ − pj

m)
∂rψ

∂gi
,

– at Grad ~dϕ:

N ij
ϕ + N ji

ϕ = 0 , ϕ = 1, . . . , m , (3.107)

where

N ij
ϕ =

n∑

α=1

ρα
∂fα

∂hi
ϕ

uj
α − pi

ϕuj
ϕ +

m−1∑

ψ=1

(pj
ψ − pj

m)
∂rψ

∂hi
ϕ

, ϕ = 1, . . . , m ,

– at G̀γ iJK

γ :

CiJK
γ + CiKJ

γ = 0 , γ = 1, . . . , n , (3.108)

with

CiJK
γ =

∂(ρf)

∂GiJK
γ

−
m∑

ϕ=1

δγϕρϕpk
ϕF−1

ϕ
Ji

F−1
ϕ

Kk
+ F−1

γ
Jj

F−1
γ

Kk

{
n∑

α=1

ραuk
α

∂fα

∂Dij
γ

+
n−1∑

δ=1

(δγδ − δγn)
n∑

α=1

ραuk
α

∂fα

∂Ωij
δ

+
m−1∑

ψ=1

(pk
ψ − pk

m)

[
∂rψ

∂Dij
γ

+
n−1∑

δ=1

(δγδ − δγn)
∂rψ

∂Ωij
δ

]

 ,

– at Grad Gγ:

DiJKL
γ = DiKJL

γ , DiJJJ
γ = 0 , DiJJK

γ + 2DiJKJ
γ = 0 ,

Di123
γ + Di231

γ + Di312
γ = 0 , γ = 1, . . . , n; i, J,K = 1, 2, 3 ,(3.109)

where we do not sum over the underlined superscripts, and where

DiJKL
γ =

n∑

α=1

ρα
∂fα

∂GiJK
γ

(uj
α − uj

γ)F
−1
γ

Lj
+

m−1∑

ψ=1

(pk
ψ − pk

m)
∂rψ

∂GiJK
γ

F−1
γ

Lk
. (3.110)

Due to the previous results, the dependence of the entropy inequality on Wn reduces to
the linear dependence, so we obtain an additional constraint

K ij = Kji , (3.111)

for

Kij =
n∑

γ=1

n∑

α=1

ρα
∂fα

∂F iJ
γ

F jJ
γ +

n∑

γ=1

∂(ρf)

∂GiJK
γ

GjJK
γ −

m∑

ϕ=1

pj
ϕhi

ϕ .
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The rest of the entropy inequality can be rearranged into the following form:

0 ≥
n∑

α=1

n∑

γ=1

ρα

[
∂fα

∂F iJ
γ

F jJ
γ +

∂fα

∂GiJK
γ

GjJK
γ

]
(Dij

γ + Ωij
γ ) −

m∑

ϕ=1

pj
ϕhi

ϕ(Dij
ϕ + Ωij

ϕ )

+
n∑

α=1

n∑

γ=1

ρα
∂fα

∂F iJ
γ

GiJK
γ F−1

γ
Kj

(uj
α − uj

γ) +
n−1∑

δ=1

n∑

α=1

ρα
∂fα

∂ui
δ

uj
α(Dij

δ −Dij
n + Ωij

δ )

+
m∑

ϕ=1

n∑

α=1

ρα
∂fα

∂ρϕ

ui
αhi

ϕ −
m∑

ϕ=1

(ui
ϕhi

ϕ + ρϕDii
ϕ)(gϕ − fϕ) −

m∑

ϕ=1

pi
ϕhi

ϕDkk
ϕ

+
m−1∑

ψ=1

(pk
ψ − pk

m)





n∑

γ=1

∂rψ

∂F iJ
γ

GiJL
γ F−1

γ
Lk

+
n−1∑

δ=1

∂rψ

∂ui
δ

(Dik
δ −Dik

n + Ωik
δ )

+
m∑

ϕ=1

∂rψ

∂ρϕ

hk
ϕ +

∂rψ

∂T
gk



 +

n∑

α=1

ρα

(
∂fα

∂T
+ sα

)
uj

αgj +
m−1∑

ψ=1

(gψ − gm)rψ

+
1

T
qigi −

n∑

α=1

T ij
α Dij

α +
n−1∑

β=1

ki
βui

β +
1

2

m−1∑

ψ=1

(ui
ψui

ψ − ui
mui

m)rψ . (3.112)

All results of this section further simplify for fluids with their exceptional symmetry.

3.9 Mixtures of reacting and non-reacting fluids

Fluids are defined by their symmetry groups:

– Reacting fluid ε ∈ (1, . . . , m) ,
the symmetry group consists of all pairs (H,J), where H is an arbitrary regular
second-order tensor and J is an arbitrary third-order tensor symmetric in last two
indices.

– Non-reacting fluid ε ∈ (m + 1, . . . , n) ,
the symmetry group consists of pairs (H,J), where H is an arbitrary unimodular
(|detH| = 1) second-order tensor and J is a third-order tensor that fulfils (3.92).

Thus for a reacting component, we can choose H = F−1
κε and J = G−1

κε , defined by (3.90),
then

(Fκε,Gκε) ◦ (H,J) = (1,0) ,

where (1,0) is the unit element of the group g. According to the definition of the symmetry
group (3.89), we obtain

Fκ[(Fκε,Gκε), Θε, Xε] = Fκ[(1,0), Θε, Xε] = Fκ[Θε] . (3.113)

The possibility to omit the dependence on Xε in the last equality results from the fact
that the first equality in (3.113) is valid for any reference configuration. We can choose
the homogeneous configuration in which the dependence on Xε vanishes.7

7The existence of such a configuration is discussed in Samohýl [1].
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For a non-reacting component, we can choose

H = J1/3
κε F−1

κε ,

and

J = −J2/3
κε F−1

κε C(Gκε ⊗ F−1
κε ⊗ F−1

κε ) +
1

2
J−1/3

κε [Fκε ⊗ grad Jκε]
sym.

+
1

2
J1/3

κε [F−1
κε ⊗ ~kκε]

sym. − 1

2
J2/3

κε [Fκε
−1 ⊗ ~kκε · F−1

κε ]sym. .

The superscript sym. for a third-order tensor means symmetrization in the last two
indices:

(Asym.)ijk ≡ 1

2
(Aijk + Aikj) . (3.114)

It can be shown (Samohýl [1]) that the tensors H and J satisfy condition (3.92). Applying
the definition of the symmetry group (3.91) yields

Fε = Fκε[(Fκε,Gκε), Θε, Xε]

= Fκε




(
ρκε

ρε

)1/3

1,
1

2
ρκε

(
ρκε

ρε

)1/3


1⊗


Gradκερκε −

(
ρκε

ρε

)4/3

~hε








sym.

, Θε, Xε




= F(ρε,~hε, Θε) .

The last equality results from the fact that the previous formula can be derived for any ref-
erence configuration κ, particulary for the homogeneous reference, where the dependence
on Xε vanishes.

As a result, the constitutive equations of a mixture of reacting and non-reacting com-
ponents have the following form:

{rψ, fα, sα, ~q,~kβ,Tα} = F̂ [ργ,~hγ,Dγ,Ωδ, ~uδ, T,~g] , (3.115)

ψ = 1, . . . ,m− 1; β, δ = 1, . . . , n− 1; α, γ = 1, . . . , n ,

where we replaced εα with fα, since they are uniquely connected by the definition (3.74).

The principle of objectivity has in the case of fluid mixtures the following form:

{rψ, fα, sα,Q~q,Q~kβ,QTαQ
T} = F̂ [ργ,Q~hγ,QDγQ

T ,QΩδQ
T ,Q~uδ, T,Q~g] , (3.116)

for any orthogonal tensor Q.
Now we can rewrite the results (3.97) - (3.112) of the entropy principle for the case of

fluid mixtures. We obtain:

f = f(ργ,~hγ, T ) , γ = 1, . . . , n , (3.117)

∂f

∂T
= −s . (3.118)
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For all components we define the chemical potential gγ and the vector ~pγ:

gγ =
∂(ρf)

∂ργ

, ~pγ =
∂(ρf)

∂~hγ

, γ = 1, . . . , n . (3.119)

And we see that

s = s(ργ,~hγ, T ) , gα = gα(ργ,~hγ, T ) , ~pα = ~pα(ργ,~hγ, T ) , α, γ = 1, . . . , n .
(3.120)

0 =




n−1∑

δ=1

ρδ
∂fδ

∂~g
⊗ ~uδ +

m−1∑

ψ=1

∂rψ

∂~g
⊗ (~pψ − ~pm)




sym.

, (3.121)

0 =




n−1∑

δ=1

ρδ
∂fδ

∂~hγ

⊗ ~uδ − ~pγ ⊗ ~uγ +
m−1∑

ψ=1

∂rψ

∂~hγ

⊗ (~pψ − ~pm)




sym.

, γ = 1, . . . , n ,

(3.122)

0 =




n−1∑

δ=1

ρδ
∂fδ

∂Dγ

⊗ ~uδ +
m−1∑

ψ=1

∂rψ

∂Dγ

⊗ (~pψ − ~pm) +
n−1∑

δ=1

(δγδ − δγn)

(
n∑

α=1

ρα
∂fα

∂Ωδ

⊗ ~uα

+
m−1∑

ψ=1

∂rψ

∂Ωδ

⊗ (~pψ − ~pm)


 − ργ1⊗ ~pγ




sym.

, γ = 1, . . . , n , (3.123)

0 =
n∑

γ=1

(~pγ ⊗ ~hγ − ~hγ ⊗ ~pγ) , (3.124)

and the entropy inequality in a mixture of fluids reads:

0 ≥
n∑

γ=1

n∑

α=1

ρα
∂fα

∂ργ

~hγ · ~uα −
n∑

γ=1

(gγ − fγ)~hγ · ~uγ −
n∑

γ=1

ργ(gγ − fγ)tr Dγ

−
n∑

γ=1

~pγ · ~hγtr Dγ −
n∑

γ=1

~hγ · (Dγ + Ωγ)~pγ +
n−1∑

δ=1

n∑

α=1

ρα
∂fα

∂~uδ

· (Dδ −Dn + Ωδ)~uα

+
m−1∑

ψ=1

(~pψ − ~pm) ·



n∑

γ=1

∂rψ

∂ργ

~hγ +
∂rψ

∂T
~g +

n−1∑

δ=1

∂rψ

∂~uδ

· (Dδ −Dn + Ωδ)




+
m−1∑

ψ=1

(gψ − gm)rψ +
n∑

α=1

ρα

(
∂fα

∂T
+ sα

)
~uα · ~g +

1

T
~q · ~g −

n∑

α=1

tr TαDα

+
n−1∑

β=1

~kβ · ~uβ +
1

2

m−1∑

ψ=1

(~u 2
ψ − ~u 2

m)rψ . (3.125)

In the following text, we will be inspecting the constitutive equations for a two-component
reacting mixture of fluids in the vicinity of equilibrium. Thus we will first handle the
problem of an equilibrium in fluid mixtures in general.

3.10 Equilibrium in a mixture of fluids

The equilibrium is defined as a thermodynamic process with a zero entropy production.
This means that there is equality in the reduced entropy inequality (3.125). This is
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satisfied for a process, in which

D+
γ = 0 , Ω+

δ = 0 , ~u+
δ = ~0 , ~g+ = ~0 , (3.126)

m−1∑

ψ=1

n∑

γ=1

(
∂rψ

∂ργ

)+

(~p+
ψ − ~p+

m) · ~h+
γ = 0 , (3.127)

m−1∑

ψ=1

(g+
ψ − g+

m)r+
ψ = 0 , γ = 1, . . . , n; δ = 1, . . . , n− 1 , (3.128)

where the equilibrated quantities are denoted by symbol + .
Let symbol Σ denote the right-hand side of the entropy inequality (3.125),

Σ = Σ(ργ,~hγ,Dγ,Ωδ, ~uδ, T,~g).

According to the definition of equilibrium, Σ is maximal in equilibrium. Thus we can
write

d

dλ
Σ(ρ+

γ + λαγ,~h
+
γ + λ~γγ, λDγ, λΩδ, λ~uδ, T

+ + λβ, λ~g)
∣∣∣
λ=0

= 0 , (3.129)

d2

dλ2
Σ(ρ+

γ + λαγ,~h
+
γ + λ~γγ, λDγ, λΩδ, λ~uδ, T

+ + λβ, λ~g)
∣∣∣
λ=0

≤ 0 , (3.130)

for a real parameter λ, arbitrary, but fixed quantities

αγ, ~γγ,Dγ,Ωδ, ~uδ, β, ~g, γ = 1, . . . , n; δ = 1, . . . , n− 1 ,

and equilibrated
ρ+

γ , ~h+
γ , T+ ,

which satisfy (3.127) and (3.128).

We will consider only the extremal condition (3.129). Applying it on the reduced
entropy inequality (3.125) yields:

0 =
n∑

α=1

n∑

γ=1

ρ+
α

(
∂fα

∂ργ

)+

~h+
γ · ~uα −

n∑

α=1

(g+
α − f+

α )~h+
α · ~uα +

n−1∑

β=1

~k+
β · ~uβ

−
n∑

γ=1

ρ+
γ (g+

γ − f+
γ )tr Dγ −

n∑

γ=1

~p+
γ · ~h+

γ tr Dγ −
n∑

γ=1

~p+
γ ·Dγ

~h+
γ

+
n∑

γ=1

m−1∑

ψ=1

n−1∑

δ=1

(δδγ − δγn)

(
∂rψ

∂~uδ

)+

·Dγ(~p
+
ψ − ~p+

m) −
n∑

γ=1

tr (T+
γ Dγ)

−
n−1∑

δ=1

~h+
δ ·Ωδ~p

+
δ +

n−1∑

δ=1

m−1∑

ψ=1

(
∂rψ

∂~uδ

)+

·Ωδ(~p
+
ψ − ~p+

m) +
1

T+
~q+ · ~g

+
m−1∑

ψ=1

(
∂rψ

∂T

)+

(~p+
ψ − ~p+

m) · ~g +
n∑

γ=1

~h+
γ ·





m−1∑

ψ=1




n∑

η=1

(
∂(~pψ − ~pm)

∂ρη

)+

αη
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+
n∑

η=1

(
∂(~pψ − ~pm)

∂~hη

)+

· ~γη +

(
∂(~pψ − ~pm)

∂T

)+

β




(
∂rψ

∂ργ

)+

+
m−1∑

ψ=1

(~p+
ψ − ~p+

m)




n∑

η=1

(
∂2rψ

∂ρη∂ργ

)+

αη +
n∑

η=1

(
∂2rψ

∂~hη∂ργ

)+

· ~γη +

(
∂2rψ

∂T∂ργ

)+

β

+
n∑

η=1

(
∂2rψ

∂Dη∂ργ

)+
.. Dη +

n−1∑

δ=1

(
∂2rψ

∂Ωδ∂ργ

)+
.. Ωδ +

n−1∑

δ=1

(
∂2rψ

∂~uδ∂ργ

)+

· ~uδ

+

(
∂2rψ

∂~g∂ργ

)+

· ~g





 +

m−1∑

ψ=1

n∑

γ=1

(
∂rψ

∂ργ

)+

(~p+
ψ − ~p+

m) · ~γγ +
m−1∑

ψ=1








n∑

η=1

(
∂(gψ − gm)

∂ρη

)+

αη

+
n∑

η=1

(
∂(gψ − gm)

∂~hη

)+

· ~γη +
n∑

η=1

(
∂(gψ − gm)

∂T

)+

β


 r+

ψ

+ (g+
ψ − g+

m)




n∑

η=1

(
∂rψ

∂ρη

)+

αη +
n∑

η=1

(
∂rψ

∂~hη

)+

· ~γη +
n∑

η=1

(
∂rψ

∂Dη

)+
.. Dη

+
n−1∑

δ=1

(
∂rψ

∂Ωδ

)+
.. Ωδ +

n−1∑

δ=1

(
∂rψ

∂~uδ

)+

· ~uδ +

(
∂rψ

∂T

)+

β +

(
∂rψ

∂~g

)+

· ~g





 .

Since αη, ~γα,Dγ,Ωδ, ~uδ, β,~g, are arbitrary constants, the terms standing at them must
vanish. We obtain the following seven constraints:
The terms at αη must vanish

0 =
n∑

γ=1

m−1∑

ψ=1

(
∂rψ

∂ργ

)+ (
∂(~pψ − ~pm)

∂ρη

)+

· ~h+
γ +

n∑

γ=1

m−1∑

ψ=1

(
∂2rψ

∂ργρη

)+

(~p+
ψ − ~p+

m) · ~h+
γ

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂ρη

)+

+
m−1∑

ψ=1

(
∂(gψ − gm)

∂ρη

)+

r+
ψ , η = 1, . . . , n ,

. (3.131)

The terms at ~γη must vanish:

~0 =
m−1∑

ψ=1

(
∂rψ

∂ρη

)+

(~p+
ψ − ~p+

m) +
n∑

γ=1

m−1∑

ψ=1

(
∂rψ

∂ργ

)+

~h+
γ ·

(
∂(~pψ − ~pm)

∂~hη

)+

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂~hη

)+

+
n∑

γ=1

m−1∑

ψ=1

[(~p+
ψ − ~p+

m) · ~h+
γ ]

(
∂2rψ

∂ργ∂~hη

)+

+
m−1∑

ψ=1

(
∂(gψ − gm)

∂hη

)+

r+
ψ , η = 1, . . . , n . (3.132)

The terms at Dγ must vanish after symmetrization:

0 =




n∑

α=1

m−1∑

ψ=1

[(~p+
ψ − ~p+

m) · ~h+
α ]

(
∂2rψ

∂ρα∂Dγ

)+

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂Dγ

)+
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− ρ+
γ (g+

γ − f+
γ )1 − (~p+

γ · ~h+
γ )1 − ~h+

γ ⊗ ~p+
γ

+
m−1∑

ψ=1

n−1∑

δ=1

(δδγ − δγn)

(
∂rψ

∂~uδ

)+

⊗ (~p+
ψ − ~p+

m) − T+
γ




sym.

, γ = 1, . . . , n .

(3.133)

The terms at Ωδ must vanish after antisymmetrization:

0 =




m−1∑

ψ=1

(
∂rψ

∂~uδ

)+

⊗ (~p+
ψ − ~p+

m) − ~h+
δ ⊗ ~p+

δ +
n∑

γ=1

m−1∑

ψ=1

((~p+
ψ − ~p+

m) · ~h+
γ )

(
∂2rψ

∂ργ∂Ωδ

)+

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂Ωδ

)+



antis.

, δ = 1, . . . , n− 1 . (3.134)

The terms at ~uδ must vanish:

~0 =
n∑

γ=1

ρ+
δ

(
∂fδ

∂ργ

)+

~h+
γ − (g+

δ − f+
δ )~h+

δ + ~k+
δ +

n∑

γ=1

m−1∑

ψ=1

((~p+
ψ − ~p+

m) · ~h+
γ )

(
∂2rψ

∂ργ∂~uδ

)+

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂~uδ

)+

, δ = 1, . . . , n− 1 . (3.135)

The term at β must vanish:

0 =
n∑

γ=1

m−1∑

ψ=1

(
∂(~pψ − ~pm)

∂T

)+

· ~h+
γ

(
∂rψ

∂ργ

)+

+
n∑

γ=1

m−1∑

ψ=1

(
∂2rψ

∂ργ∂T

)+

(~p+
ψ − ~p+

m) · ~h+
γ

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂T

)+

+
m−1∑

ψ=1

(
∂(gψ − gm)

∂T

)+

r+
ψ . (3.136)

Finally, the term at ~g must vanish:

~0 =
1

T+
~q+ +

m−1∑

ψ=1

(
∂rψ

∂T

)+

(~p+
ψ − ~p+

m) +
n∑

γ=1

m−1∑

ψ=1

((~p+
ψ − ~p+

m) · ~h+
γ )

(
∂2rψ

∂ργ∂~g

)+

+
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂~g

)+

. (3.137)

We will moreover assume that the rate of mass change converges to zero in equilibrium,

r+
ψ = rψ(ρ+

γ ,~h+
γ ,0,0,~0, T+,~0) = 0 , ψ = 1, . . . ,m− 1 , (3.138)

and that the density gradient in equilibrium is equal to zero,

~h+
γ = ~0 , γ = 1, . . . , n . (3.139)

As a result of these assumptions, conditions (3.127) and (3.128) are satisfied automati-
cally. It might be a bit questionable to assert the condition (3.139) when working in the



38 CHAPTER 3. RATIONAL THERMODYNAMICS OF MIXTURES

field of external volume force (e.g. gravity), but we will assume that due to low compress-
ibility of ice, the resulting equilibrium density gradient would be negligible, see measured
density profiles (Paterson, [7]). In a temperate ice zone, there might be expected a non-
zero equilibrium density gradient resulting from variations of equilibrium water fraction.
Again according to the measurements, the resulting density variations can be neglected
and the assumption (3.139) may be regarded valid.

With an assumption (justified later by the choice of a particular material model) that
the free energy of the mixture f is independent of the density gradient,

~pγ =
∂(ρf)

∂~hγ

≡ ~0 , (3.140)

the equilibrium conditions (3.131) – (3.137) reduce considerably to the form:

0 =
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂ρα

)+

, α = 1, . . . , n , (3.141)

~0 =
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂~hα

)+

, α = 1, . . . , n , (3.142)

0 =




m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂Dγ

)+

− ρ+
γ (g+

γ − f+
γ )1 − T+

γ




sym.

, γ = 1, . . . , n ,

(3.143)

0 =




m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂Ωδ

)+



antis.

, δ = 1, . . . , n− 1 , (3.144)

~0 = ~k+
δ +

m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂~uδ

)+

, δ = 1, . . . , n− 1 , (3.145)

0 =
m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂T

)+

, (3.146)

~0 =
1

T+
~q+ +

m−1∑

ψ=1

(g+
ψ − g+

m)

(
∂rψ

∂~g

)+

. (3.147)



Chapter 4

Application to the water-ice mixture

4.1 Introduction

In this chapter we will apply the approach of rational thermodynamics to the water-ice
mixture in the temperate-ice region of a glacier.

Despite water is distinctly separated from ice, both being different phases of the same
material and separated by a singular surface of phase equilibrium, in our approach we
consider these two phases as mixed continua, both present at each point of the mixture
at the same time. The phase interface between ice and water is not considered in this
concept. The theory which handles this topic and justifies our approach is a theory of
multi-phase mixtures discussed, for example, in Passman et al. [3].

4.2 The material model

Both components, water (α = 1) and ice (α = 2), will be considered as non-simple fluids
of the constitutive model (3.115):

{r1, fα, sα, ~q,~k1,Tα} = F̂ [ργ,~hγ,Dγ,Ω1, ~u1, T,~g] , (4.1)

α, γ = 1, 2 .

For further simplifications of this constitutive model, several assumptions are to be
introduced. Guided by an effort to keep the material model as simple as possible and to
implement the expected features of the mixture, e.g. the nonlinear stress – strain-rate
relationship, we will confine ourselves to the following model. The constitutive functionals

{r1, fα, sα, ~q,~k1} , α = 1, 2 , (4.2)

will be linearized in the vicinity of equilibrium, defined by eq. (3.126) – (3.147), in vari-

ables {~hγ,Dγ,Ω1, ~u1, ~g}, without imposing any restrictions on the functional dependence
on the remaining variables, ργ, T .

The stress-tensor functionals Tα will not be linearized, since the constitutive relation
for the stress in pure ice is nonlinear with respect to D and T . We expect this behaviour

39
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to persist in the mixture. Thus a simplification by truncating the Taylor expansion series
as in the case of constitutive functionals {r1, fα, sα, ~q,~k1} may be incorrect of Tα.

Now we will make use of the principle of objectivity (3.116), which states:

{r1, fα, sα,Q~q,Q~k1,QTαQ
T} = F̂ [ργ,Q~hγ,QDγQ

T ,QΩ1Q
T ,Q~u1, T,Q~g] , (4.3)

for any orthogonal tensor Q, α, γ = 1, 2. This principle asserts that the constitutive
relations (4.1) are isotropic functions of their variables:

A scalar a, a vector ~a or a tensor (second-order) A are isotropic functions of scalars
yα, vectors ~yβ and second-order tensors Yγ respectively if they satisfy:

a = a(yα, ~yβ,Yγ) = a(yα,Q~yβ,QYγQ
T ) , (4.4)

~a = ~a(yα, ~yβ,Yγ) = QT~a(yα,Q~yβ,QYγQ
T ) , (4.5)

A = A(yα, ~yβ,Yγ) = QTA(yα,Q~yβ,QYγQ
T )Q , (4.6)

for any orthogonal tensor Q. Now we introduce

• the representation theorem for linear isotropic functions, (Samohýl [1]):
If an isotropic scalar a, an isotropic vector ~a or an isotropic second-order tensor
A, depend linearly on r vectors ~yβ, (β = 1, . . . , r), and s second-order tensors Yγ,
(γ = 1, . . . , s), it is sufficient and necessary to represent them in the forms

a = a0 +
s∑

γ=1

ϑγtr Yγ , (4.7)

~a =
r∑

β=1

ζβ~yβ , (4.8)

A = τ1 +
s∑

γ=1

αγ(tr Yγ)1 +
s∑

γ=1

(ηγYγ + ξγY
T ) , (4.9)

where a0, ϑγ, ζβ, τ , αγ, ηγ, and ξγ are scalar constants.

The linearization of the constitutive equations (4.2) with respect to {~hγ,Dγ,Ω1, ~u1, ~g},
with the use of objectivity (4.3), and employing the representation theorem for linear
isotropic functions (4.7) and (4.8) gives the constitutive equations of the following form,

r1 = r
(0)
1 (ργ, T ) + r

(1)
1 (ργ, T ) trD1 + r

(2)
1 (ργ, T ) trD2, (4.10)

fα = f (0)
α (ργ, T ) + f (1)

α (ργ, T ) trD1 + f (2)
α (ργ, T ) trD2, (4.11)

sα = s(0)
α (ργ, T ) + s(1)

α (ργ, T ) trD1 + s(2)
α (ργ, T ) trD2, (4.12)

~q = − k(ργ, T )~g − λ(ργ, T )~u1 +
2∑

ψ=1

χψ(ργ, T )~hψ , (4.13)

~k1 = − ξ(ργ, T )~g − ν(ργ, T )~u1 +
2∑

ψ=1

ωψ(ργ, T )~hψ , (4.14)

while the stress tensors Tα are represented by nonlinear functionals as

Tα = Tα(ργ,~hγ,Dγ,Ω1, ~u1, T,~g) , (4.15)

α, γ = 1, 2 .
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4.3 Equilibrium in the water-ice mixture

We have simplified our material model by the partial linearization. To learn more about
its properties, we will inspect the equilibrium in the model more closely.

In the previous chapter, the equilibrium in a two-component mixture of non-simple
fluids is defined as a process, for which it holds:

D+
γ = 0 , Ω+

1 = 0 , ~u+
1 = ~0 , ~g+ = ~0 , (4.16)

2∑

ψ=1

(
∂r1

∂ργ

)+

(~p+
1 − ~p+

2 ) · ~h+
γ = 0 , (4.17)

(g+
1 − g+

2 )r+
1 = 0 , (4.18)

γ = 1, 2 .

We postulated by (3.138) that:

r+
1 = r1(ρ

+
γ ,~0,0,0,~0, T+,~0) = 0 ,

and by (3.139) that:
~h+

γ = ~0 , γ = 1, 2 .

As a consequance of these two postulates, (4.17) and (4.18) are satisfied identically.

According to (4.11), the free energies fα are independent of density gradients ~hγ. The
same holds for the free energy f of a mixture, because of its definition (3.94). Conse-
quently, (3.119), yields

~pγ ≡ ~0 , γ = 1, 2 , (4.19)

and the equilibrium conditions (3.131)-(3.137) can be reduced to the form (3.141)-(3.147).
In the case of a 2-component mixture, they read:

0 = (g+
1 − g+

2 )

(
∂r1

∂ρα

)+

, α = 1, 2 , (4.20)

~0 = (g+
1 − g+

2 )

(
∂r1

∂~hα

)+

, α = 1, 2 , (4.21)

0 = (g+
1 − g+

2 )

(
∂r1

∂Dα

)+

− ρ+
α (g+

α − f+
α )1 − T+

α , α = 1, 2 , (4.22)

0 = (g+
1 − g+

2 )

(
∂r1

∂Ω1

)+

, (4.23)

~0 = ~k+
1 + (g+

1 − g+
2 )

(
∂r1

∂~u1

)+

, (4.24)

0 = (g+
1 − g+

2 )

(
∂r1

∂T

)+

, (4.25)

~0 =
1

T+
~q+ + (g+

1 − g+
2 )

(
∂r1

∂~g

)+

. (4.26)
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We have omitted the superscripts sym. and antis. in (4.22) and (4.23), respectively,
since (4.22) is already symmetric (see (3.47)) and (4.23) is antisymmetric due to the
antisymmetry of Ω1.

Equations (4.10)-(4.15) imply that (4.21) and (4.23) are satisfied automatically, since

r1 does not depend neither on ~h1, nor Ω1. Moreover, r1 does not depend on ~u1 and ~g, so
equations (4.24) and (4.26), yield

~k+
1 = ~0 , and ~q+ = ~0 .

If we assume that either

(
∂r1

∂ρα

)+

6= 0 , or

(
∂r1

∂T

)+

6= 0 ,

then (4.20) or (4.25) imply that
g+
1 = g+

2 . (4.27)

This result was expected as g1 and g2 are chemical potentials of the two phases. Finally
(4.22) states that

T+
α = −ρ+

α (g+
α − f+

α )1 , (4.28)

hence the Cauchy stress tensor in equilibrium reduces to an isotropic tensor.

4.4 Further reductions by the entropy principle

In this section we employ the entropy principle to simplify the constitutive model. In-
specting (3.121)-(3.124) we can see that they are satisfied identically due to (4.10)–(4.15),
(4.19), except (3.123) which now reads

0 =

[
ρ1

∂f1

∂D1

⊗ ~u1

]sym.

, 0 =

[
ρ1

∂f1

∂D2

⊗ ~u1

]sym.

. (4.29)

According to (4.11) we have

f1 = f
(0)
1 (ργ, T ) + f

(1)
1 (ργ, T ) trD1 + f

(2)
1 (ργ, T ) trD2 , (4.30)

hence, the differentiation of f1 with respect to D1 reads

(
∂f1

∂D1

)

ij

=
∂f1

∂D1ij

= f
(1)
1 (ργ, T )δij . (4.31)

Then, according to (3.114), the first condition in (4.29) reads

1

2
ρ1f

(1)
1

(
δiju1k + δiku1j

)
= 0 , ∀ i, j, k . (4.32)
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Provided that ~u1 6≡ ~0, we can always achieve by a suitable choice of the coordinate system
that

u11 6= 0, u12 = u13 = 0 .

In particular for i = j = 3, k = 1, we get:

ρ1f
(1)
1 ≡ 0 . (4.33)

For a non-zero water-density ρ1 (or, equivalently, non-zero water fraction w) we immedi-
ately find

f
(1)
1 (ργ, T ) = 0 . (4.34)

Provided that the function f
(1)
1 (ργ, T ) is a continuous function of its arguments, we extend

f
(1)
1 for ρ1 = 0 by the limit

f
(1)
1 (ρ1 = 0, ρ2, T ) = lim

ρ1→0
f

(1)
1 (ργ, T ) = 0 ,

and thus obtain
f

(1)
1 (ργ, T ) ≡ 0 . (4.35)

The second condition in (4.29) can be analyzed exactly the same way to obtain (under

the same assumptions of continuity of f
(2)
1 (ργ, T ))

f
(2)
1 (ργ, T ) ≡ 0 . (4.36)

To conclude, eq. (4.29) yields
f1 = f1(ργ, T ), (4.37)

where we omitted the superscript (0).
Let us recall (3.117), which implies that

∂f

∂Dγ

≡ 0 , γ = 1, 2 ,

where f is the free energy of mixture, defined by (3.94) as ρf = ρ1f1 + ρ2f2 . Having
shown that f1 is independent of Dγ, we see that

∂f2

∂Dγ

≡ 0 , γ = 1, 2 . (4.38)

Due to (4.11) for α = 2,

f2 = f
(0)
2 (ργ, T ) + f

(1)
2 (ργ, T ) trD1 + f

(2)
2 (ργ, T ) trD2 ,

and the constraint (4.38), we have

f
(1)
2 ≡ 0 , (4.39)

f
(2)
2 ≡ 0 , (4.40)

and, consequently,
f2 = f2(ργ, T ) , (4.41)
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where the superscript (0) has been omitted.

The reduced entropy inequality (3.125) has the following form:

0 ≥
(
ρ1

∂f1

∂ρ1

− (g1 − f1) + ω1

)
~h1 · ~u1 +

(
ρ1

∂f1

∂ρ2

+ ω2

)
~h2 · ~u1

+

{
ρ1

(
∂f1

∂T
+ s

(0)
1 + s

(1)
1 trD1 + s

(2)
1 trD2

)
− λ

T
− ξ

}
~g · ~u1 +

χ1

T
~h1 · ~g +

χ2

T
~h2 · ~g

+
(

1

2

(
r
(0)
1 + r

(1)
1 trD1 + r

(2)
1 trD2

)
− ν

)
~u2

1 − k

T
~g2 − ρ1(g1 − f1)trD1

− ρ2(g2 − f2)trD2 + (g1 − g2)(r
(0)
1 + r

(1)
1 trD1 + r

(2)
1 trD2) − T1

.. D1 − T2
.. D2 .

(4.42)

This inequality must hold for any values of independent variables, particularly for any
arbitrary ~h1, ~h2, ~u1, ~g, D1, D2. Now we will consider various combinations of these
variables:

• for ~h1 arbitrary, ~h2 = ~u1 = ~g = ~0, D1 = D2 = 0:

0 ≥ (g1 − g2)r
(0)
1 . (4.43)

This confirms the expected ”direction” of the reaction from higher to lower chemical
potential.

• for ~u1 arbitrary, ~h1 = ~h2 = ~g = ~0, D1 = D2 = 0:

0 ≥
(

1

2
r
(0)
1 − ν

)
~u2

1 + (g1 − g2)r
(0)
1 . (4.44)

Since the second term is independent of ~u1, we find that the term in parenthesis
must be always non-positive:

1

2
r
(0)
1 − ν ≤ 0 , or

1

2
r
(0)
1 ≤ ν . (4.45)

• for ~g arbitrary, ~h1 = ~h2 = ~u1 = ~0, D1 = D2 = 0:

0 ≥ − k

T
~g2 + (g1 − g2)r

(0)
1 . (4.46)

Since the second term does not depend on ~g, and since T is positive quantity, it
must hold

k ≥ 0 . (4.47)

• for ~h1, ~u1 arbitrary, ~h2 = ~g = ~0, D1 = D2 = 0:

0 ≥
(
ρ1

∂f1

∂ρ1

− (g1 − f1) + ω1

)
~h1 · ~u1 +

(
1

2
r
(0)
1 − ν

)
~u2

1 + (g1 − g2)r
(0)
1 . (4.48)

Since the last two terms are independent of ~h1, the term in the first parenthesis
must vanish:

ρ1
∂f1

∂ρ1

− (g1 − f1) + ω1 ≡ 0 (4.49)
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• for ~h1, ~g arbitrary, ~h2 = ~u1 = ~0, D1 = D2 = 0:

0 ≥ χ1

T
~h1 · ~g − k

T
~g2 + (g1 − g2)r

(0)
1 . (4.50)

Since the last two terms are independent of ~h1, we find

χ1 ≡ 0 . (4.51)

• for ~h2, ~u1 arbitrary, ~h1 = ~g = ~0, D1 = D2 = 0:

0 ≥
(
ρ1

∂f1

∂ρ2

+ ω2

)
~h2 · ~u1 +

(
1

2
r
(0)
1 − ν

)
~u2

1 + (g1 − g2)r
(0)
1 . (4.52)

The last two terms are independent of ~h2, thus we obtain

ρ1
∂f1

∂ρ2

+ ω2 ≡ 0 . (4.53)

• for ~h2, ~g arbitrary, ~h1 = ~u1 = ~0, D1 = D2 = 0:

0 ≥ χ2

T
~h2 · ~g − k

T
~g2 + (g1 − g2)r

(0)
1 , (4.54)

since the last two terms are independent of ~h2, we obtain

χ2 ≡ 0 . (4.55)

Other combinations of variables need not be considered, since they do not provide any
exploitable constraints. The entropy inequality (4.42) now reads

0 ≥
{

ρ1

(
∂f1

∂T
+ s

(0)
1 + s

(1)
1 trD1 + s

(2)
1 trD2

)
− λ

T
− ξ

}
~u1 · ~g

+
(

1

2

(
r
(0)
1 + r

(1)
1 trD1 + r

(2)
1 trD2

)
− ν

)
~u2

1 −
k

T
~g2 − ρ1(g1 − f1) trD1

− ρ2(g2 − f2) trD2 + (g1 − g2)(r
(0)
1 + r

(1)
1 trD1 + r

(2)
1 trD2)

− T1
.. D1 − T2

.. D2 . (4.56)

Having exploited the entropy principle, we arrived at:

r1 = r
(0)
1 (ργ, T ) + r

(1)
1 (ργ, T ) trD1 + r

(2)
1 (ργ, T ) trD2, (4.57)

fα = f (0)
α (ργ, T ) , (4.58)

sα = s(0)
α (ργ, T ) + s(1)

α (ργ, T ) trD1 + s(2)
α (ργ, T ) trD2, (4.59)

~q = − k(ργ, T )~g − λ(ργ, T )~u1 , (4.60)

~k1 = − ξ(ργ, T )~g − ν(ργ, T )~u1 +
2∑

ψ=1

ωψ(ργ, T )~hψ , (4.61)

Tα = Tα(ργ,~hγ,Dγ,Ω1, ~u1, T,~g), (4.62)
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4.5 Linearization with respect to the water content

In this section we make use of the fact that the water fraction (defined bellow) in the
temperate-ice region of a glacier is a few percent only (Hutter, [4]). If we assume that
the constitutive functionals are continuous and differentiable in densities ρ1, ρ2, it seems
us reasonable to expand constitutive functionals into a Taylor series with respect to the
water content. This procedure together with several additional assumptions will provide
new constraints on the constitutive model.

Let ψ(ργ, T ) be any quantity occuring in the constitutive equations (4.57)-(4.62).
Defining the water mass fraction w

w =
ρ1

ρ
, (4.63)

where ρ = ρ1 + ρ2 is the density of mixture, see (3.33), we can write

ρ1 = w ρ , (4.64)

ρ2 = (1− w) ρ , (4.65)

and consider a formal substitution

ψ(ρ1, ρ2, T ) −→ ψ(w, ρ, T ) .

Under the assumption of differentiability of the model with respect to w1, we make the
Taylor expansion in the vicinity of w = 0:

ψ(w, ρ, T ) = ψ(0, ρ, T ) + w
∂ψ(w, ρ, T )

∂w

∣∣∣∣∣
w=0

+ O(w2)

= ψ̃(ρ, T ) + wψ̂(ρ, T ) + O(w2), (4.66)

where the first two terms are expressed explicitly. Since w small, at most few percent
(Hutter, [4]), we omit the higher-order terms in (4.66) and write a linearized form:

ψ = ψ̃(ρ, T ) + wψ̂(ρ, T ) . (4.67)

We will now apply the linearized form (4.67) to the bracketed terms in (4.57)–(4.61)

and, will keep only the terms linear with respect to w,~hγ, ~u1, ~g,Dγ. Applying (4.67) to
(4.57), we have

• r1 :

r1 = r̃
(0)
1 (ρ, T ) + r̃

(1)
1 (ρ, T ) trD1 + r̃

(2)
1 (ρ, T ) trD2

+ w(r̂
(0)
1 (ρ, T ) + r̂

(1)
1 (ρ, T ) trD1 + r̂

(2)
1 (ρ, T ) trD2) .

In view of linearization, we also omit the last two terms w trD1 and w trD2:

r1 = r̃
(0)
1 (ρ, T ) + wr̂

(0)
1 (ρ, T ) + r̃

(1)
1 (ρ, T ) trD1 + r̃

(2)
1 (ρ, T ) trD2 . (4.68)

1This assumption might be questionable since the presence of water may cause ”jump” discontinuity
in several material parameters, but we will not consider this case here in accordance with the traditional
approach in glaciology.
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• fα, α = 1, 2 :
fα = f̃α(ρ, T ) + wf̂α(ρ, T ) . (4.69)

• sα, α = 1, 2 :

sα = s̃(0)
α (ρ, T ) + s̃(1)

α (ρ, T ) trD1 + s̃(2)
α (ρ, T ) trD2

+ w(ŝ(0)
α (ρ, T ) + ŝ(1)

α (ρ, T ) trD1 + ŝ(2)
α (ρ, T ) trD2) . (4.70)

Following the same argumentation as for r1, we omit the terms w trD1, w trD2:

sα = s̃(0)
α (ρ, T ) + wŝ(0)

α (ρ, T ) + s̃(1)
α (ρ, T ) trD1 + s̃(2)

α (ρ, T ) trD2 . (4.71)

The entropy of the mixture was defined in (3.95) as

s =
ρ1

ρ
s1 +

ρ2

ρ
s2

= w s1 + (1− w) s2.

By (4.71), we have

s = w (s̃
(0)
1 + w ŝ

(0)
1 + s̃

(1)
1 trD1 + s̃

(2)
1 trD2) (4.72)

+ (1− w) (s̃
(0)
2 + w ŝ

(0)
2 + s̃

(1)
2 trD1 + s̃

(2)
2 trD2) ,

or with the help of an auxiliary quantity S:

S = (s̃
(0)
1 + w ŝ

(0)
1 + s̃

(1)
1 trD1 + s̃

(2)
1 trD2 + ŝ

(0)
2 − s̃

(0)
2 − w ŝ

(0)
2

− s̃
(1)
2 trD1 − s̃

(2)
2 trD2) ,

we may write

s = s̃
(0)
2 (ρ, T ) + s̃

(1)
2 (ρ, T ) trD1 + s̃

(2)
2 (ρ, T ) trD2 + w S(w, ρ, T, trD1, trD2) .

(4.73)

Now let us recall the result (3.120), which implies

∂s

∂D1

≡ 0 ,
∂s

∂D2

≡ 0 , (4.74)

or with the use of (4.73)

s̃
(1)
2 (ρ, T )1 + w

∂S(w, ρ, T, trD1, trD2)

∂D1

≡ 0 ,

s̃
(2)
2 (ρ, T )1 + w

∂S(w, ρ, T, trD1, trD2)

∂D2

≡ 0 ,

Taking the limit of these two identities for w → 0 yields

s̃
(1)
2 (ρ, T ) ≡ 0 , (4.75)
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and
s̃
(2)
2 (ρ, T ) ≡ 0 , (4.76)

respectively. Equation (4.71) for α = 2 reduces to the form:

s2 = s̃2(ρ, T ) + w ŝ2(ρ, T ) , (4.77)

where we omitted the superscript (0). Since we now have

∂s2

∂Dγ

≡ 0 , γ = 1, 2 ,

and concerning (4.74) and the definition of the mixture entropy density (3.95), we
immediately conclude that

∂s1

∂D1

≡ 0 −→ s̃
(1)
1 (ρ, T ) ≡ 0 ,

and
∂s1

∂D2

≡ 0 −→ s̃
(2)
1 (ρ, T ) ≡ 0 ,

and equation (4.71) for α = 1 reduces to the form:

s1 = s̃1(ρ, T ) + w ŝ1(ρ, T ) . (4.78)

• ~q :
The expansion of coefficients k and λ in the constitutive equation (4.60) for ~q yields

~q = −(k̃(ρ, T ) + wk̂(ρ, T ))~g − (λ̃(ρ, T ) + wλ̂(ρ, T ))~u1 .

In view of linearization, we omit the terms w~g and w~u1:

~q = −k(ρ, T )~g − λ(ρ, T )~u1 , (4.79)

where the label˜was dropped out.

• ~k1 :
To linearize ~k1, we first handle the terms ω1

~h1 and ω2
~h2. By (4.49), we have:

ω1 = g1 − f1 − ρ1
∂f1

∂ρ1

. (4.80)

The chemical potential g1 was defined by (3.119):

g1 =
∂(ρf(ργ, T ))

∂ρ1

=
∂

∂ρ1

(ρ1f1(ργ, T ) + ρ2f2(ργ, T ))

= f1(ργ, T ) + ρ1
∂f1(ργ, T )

∂ρ1

+ ρ2
∂f2(ργ, T )

∂ρ1

,
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so

ω1 = ρ2
∂f2(ργ, T )

∂ρ1

.

But

∂f2(ργ, T )

∂ρ1

=
∂

∂ρ1

∣∣∣∣∣
ρ2,T

(f̃2(ρ, T ) + w f̂2(ρ, T ))

=
∂

∂ρ1

∣∣∣∣∣
ρ2,T

(
f̃2(ρ1 + ρ2, T ) +

ρ1

ρ1 + ρ2

f̂2(ρ1 + ρ2, T )

)

=
∂f̃2(ρ, T )

∂ρ
+

ρ2

(ρ1 + ρ2)2
f̂2(ρ, T ) +

ρ1

ρ1 + ρ2

∂f̂2(ρ, T )

∂ρ

=
∂f̃2(ρ, T )

∂ρ
+

(1− w)

ρ
f̂2(ρ, T ) + w

∂f̂2(ρ, T )

∂ρ

=
∂f̃2(ρ, T )

∂ρ
+

f̂2(ρ, T )

ρ
+ w

{
∂f̂2(ρ, T )

∂ρ
− f̂2(ρ, T )

ρ

}
,

and ω1 then reads

ω1 = ρ (1− w)

(
∂f̃2(ρ, T )

∂ρ
+

f̂2(ρ, T )

ρ
+ w

{
∂f̂2(ρ, T )

∂ρ
− f̂2(ρ, T )

ρ

})

= ρ
∂f̃2(ρ, T )

∂ρ
+ f̂2(ρ, T )

+ w

{
ρ

∂f̂2(ρ, T )

∂ρ
− f̂2(ρ, T )− ρ

∂f̃2(ρ, T )

∂ρ
− f̂2(ρ, T ) + w f̂2(ρ, T )

− wρ
∂f̂2(ρ, T )

∂ρ

}
. (4.81)

Using (4.53) we have

ω2 = −ρw
∂f1(ργ, T )

∂ρ2

= −ρw
∂(f̃1(ρ, T ) + wf̂1(ρ, T ))

∂ρ2

∣∣∣∣∣
ρ1,T

= −ρw
∂

∂ρ2

∣∣∣∣∣
ρ1,T

(
f̃1(ρ1 + ρ2, T ) +

ρ1

ρ1 + ρ2

f̂1(ρ1 + ρ2, T )

)

= −ρw

(
∂f̃1(ρ, T )

∂ρ
− ρ1

(ρ1 + ρ2)2
f̂1(ρ, T ) +

ρ1

ρ1 + ρ2

∂f̂1(ρ, T )

∂ρ

)

= −ρw

(
∂f̃1(ρ, T )

∂ρ
− w

f̂1(ρ, T )

ρ
+ w

∂f̂1(ρ, T )

∂ρ

)
. (4.82)
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Substituting the expansions (4.81), (4.82), and the expansions of the coefficients

ξ = ξ̃(ρ, T ) + w ξ̂(ρ, T ) ,

ν = ν̃(ρ, T ) + w ν̂(ρ, T ) ,

into the constitutive equation (4.61) for ~k1, neglecting the nonlinear terms propor-

tional to w~g, w~u1, w~h1, w~h2, results in

~k1 = −ξ(ρ, T )~g − ν(ρ, T ) ~u1 − ω(ρ, T )~h1 , (4.83)

where we omitted the label˜and introduced

ω = −
(
ρ

∂f̃2(ρ, T )

∂ρ
+ f̂2(ρ, T )

)
. (4.84)

• T1 :
The expansion of the Cauchy stress tensor for the water component T1 reads

T1 = T̃1(ρ,~hγ,Dγ,Ω1, ~u1, T,~g) + wT̂1(ρ,~hγ,Dγ,Ω1, ~u1, T,~g). (4.85)

It is not obvious that the constitutive relation for the stress tensor is continuous or
even differentiable in the water fraction. However, following traditional approach in
glaciology, we assume differentiability of the constitutive functional.

• T2 :
Similarly, we expand

T2 = T̃2(ρ,~hγ,Dγ,Ω1, ~u1, T,~g) + wT̂2(ρ,~hγ,Dγ,Ω1, ~u1, T,~g). (4.86)

In the next step, we will introduce an incompressibility condition into the constitutive
model. To do it we firstly rewrite the entropy inequality in terms of the barycentric
velocity and the diffusive velocity with respect to the barycentre.

4.5.1 Entropy inequality in terms of the barycentric velocity

Considering r2 = −r1, due to (3.32), the entropy inequality (3.75) for a two-component
reacting mixture reads:

0 ≥ ρ1f̀
1
1 + ρ2f̀

2
2 + r1(f1 − f2) + ρ1s1T̀

1 + ρ2s2T̀
2 +

~q · ~g
T

− T1
.. D1 − T2

.. D2 + ~k1 · ~u1 +
1

2
r1~u

2
1 . (4.87)

We recall that the superscript`α denotes the material time derivative with respect to the
velocity of the α component. For what it follows, it is convenient to rewrite the entropy
inequality in the following manner.
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First we introduce the barycentric velocity ~vB by (2.12)

~vB =
ρ1

ρ
~v1 +

ρ2

ρ
~v2 ,

and the barycentric diffusion velocities ~uB
1 , ~uB

2

~uB
1 = ~v1 − ~vB , ~uB

2 = ~v2 − ~vB . (4.88)

Consequently,
ρ1~u

B
1 + ρ2~u

B
2 = ~0 ,

and
~uB

2 = −ρ1

ρ2

~uB
1 . (4.89)

Now we can rewrite

f̀ 1
1 =

∂f1

∂t
+ grad f1 · ~v1

=
∂f1

∂t
+ grad f1 · ~vB + grad f1 · ~uB

1

= f̀B
1 + grad f1 · ~uB

1 , (4.90)

where`B now denotes the material time derivative with respect to the barycentric velocity.
Similarly we obtain

f̀ 2
2 = f̀B

2 + grad f2 · ~uB
2

= f̀B
2 − ρ1

ρ2

grad f2 · ~uB
1 , (4.91)

where we made use of (4.89). Analogously, it holds

T̀ 1 = T̀B + ~g · ~uB
1 , (4.92)

T̀ 2 = T̀B − ρ1

ρ2

~g · ~uB
1 , (4.93)

We can also write

D1 = {grad~v1}sym.

=
{
grad~vB + grad ~uB

1

}sym.

= DB + DB
1 , (4.94)

with
DB = {grad~vB}sym., DB

1 = {grad~uB
1 }sym. , (4.95)

and similarly

D2 = {grad~v2}sym.

=
{
grad~vB + grad ~uB

2

}sym.

=

{
grad~vB − ρ1

ρ2

grad ~uB
1

}sym.

= DB − ρ1

ρ2

DB
1 . (4.96)
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Finally

~u1 = ~v1 − ~v2

= (~vB + ~uB
1 ) − (~vB + ~uB

2 )

=

(
1 +

ρ1

ρ2

)
~uB

1 . (4.97)

We insert the expressions (4.90) – (4.97) into the entropy inequality (4.87) and arrive at
the form:

0 ≥ ρ1

{
f̀B

1 + grad f1 · ~uB
1

}
+ ρ2

{
f̀B

2 − ρ1

ρ2

grad f2 · ~uB
1

}
+ r1(f1 − f2)

+ ρ1s1

{
T̀B + ~g · ~uB

1

}
+ ρ2s2

{
T̀B − ρ1

ρ2

~g · ~uB
1

}
+

~q · ~g
T

− T1
.. (DB + DB

1 ) − T2
.. (DB − ρ1

ρ2

DB
1 ) +

(
1 +

ρ1

ρ2

)
~k1 · ~uB

1

+
1

2

(
1 +

ρ1

ρ2

)2

r1(~u
B
1 )2,

which, after slight rearranging the terms, reads

0 ≥ ρ1f̀
B
1 + ρ2f̀

B
2 + ρ1~u

B
1 · grad(f1 − f2) + r1(f1 − f2) + (ρ1s1 + ρ2s2)T̀

B

+ ρ1(s1 − s2)~g · ~uB
1 +

~q · ~g
T

− (T1 + T2)
.. DB −

(
T1 − ρ1

ρ2

T2

)
.. DB

1

+

(
1 +

ρ1

ρ2

)
~k1 · ~uB

1 +
1

2

(
1 +

ρ1

ρ2

)2

r1(~u
B
1 )2 . (4.98)

4.5.2 The incompressibility

Let dV be an infinitesimal volume occupied by the mixture and dm1 and dm2 be the masses
of water and ice components occupying volume elements dV1 and dV2, respectively. We
introduce material densities ρ̃1 and ρ̃2 by

ρ̃1 =
dm1

dV1

, ρ̃2 =
dm2

dV2

, (4.99)

and the water volume fraction w̃

w̃ =
dV1

dV
. (4.100)

We assume that ice-water mixture is saturated, that is

dV1 + dV2 = dV . (4.101)
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This means that the two components completely fill the space and there are no gaps, air
bubbles and holes in the mixture. Densities ρ1, ρ2, defined in (3.25), can be expressed as

ρ1 =
dm1

dV
= ρ̃1w̃ , (4.102)

ρ2 =
dm2

dV
= ρ̃2(1− w̃) . (4.103)

Since both water and ice can be regarded as incompressible materials (Hutter, [4]), with
the material densities ρ̃1 and ρ̃2 being constant, the variation of the mixture density (3.33)
ρ = ρ1 + ρ2 is then estimated by

δρ = δρ1 + δρ2

= ρ̃1 δw̃ − ρ̃2 δw̃

= (ρ̃1 − ρ̃2) δw̃ . (4.104)

The values ρ̃1 and ρ̃2 differ approximately within 10% (Hutter, [4]), the variation of the
water volume fraction is of the order of the fraction, i.e. less than 5%, thus the variation
of ρ is of the order of

δρ

ρ
∼ 10−3 .

This motivates us to introduce an additional constraint of the form

ρ = ρ1 + ρ2 ≡ const. , (4.105)

where the equivalence symbol in (4.105) denotes both time and spatial constancy.

The introduction of an internal constraint affects the thermo-mechanical description of
a material model by additional reaction functionals. For example, an additional pressure
−p1 is introduced in a 1-component elastic incompressible material. In general, consti-
tutive functional F of a constrained material will be considered in the form (Gurtin &
Guidugli, [5]):

F = FE + F̄ , (4.106)

where FE (E as ”extra”) is the constitutive functional in the absence of the constraint
and F̄ represents the reaction functional due to the constraint.

In our particular case we will consider an extension of constitutive functions by the

reaction set
{
r̄1, f̄α, s̄α, ~̄q, ~̄k1, T̄α

}
in the form:

r1 = rE
1 + r̄1 , (4.107)

fα = fE
α + f̄α , (4.108)

sα = sE
α + s̄α , (4.109)
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~q = ~qE + ~̄q , (4.110)

~k1 = ~kE
1 + ~̄k1 , (4.111)

Tα = TE
α + T̄α , (4.112)

α = 1, 2 .

Following Gurtin & Guidugli [5], we assume that given a constraint functional C of the
form

C(ρt
1, ρ

t
2,F

t
1,F

t
2, T

t) = 0 ,

(where the superscript t denotes the history), the reaction set {r̄1, f̄α, s̄α, ~̄q, ~̄k1, T̄α} is
determined by a reaction function RC

{r̄1, f̄α, s̄α, ~̄q, ~̄k1, T̄α} = RC(ρ1, ρ2,F1,F2, T ) , (4.113)

where ρ1, ρ2,F1,F2, T are the present values of densities, deformation gradients and tem-

perature, respectively. The reaction set {r̄1, f̄α, s̄α, ~̄q, ~̄k1, T̄α} is, in addition, asserted to
be closed to scalar multiplication (Gurtin&Guidugli [5]), thus for an arbitrary real λ, the

set{λr̄1, λf̄α, λs̄α, λ~̄q, λ~̄k1, λT̄α}, is also an admissible reaction.
The reaction set (4.113) will be determined with the use of entropy inequality (4.98).

Inserting the expansion (4.107)-(4.112) of the functionals {r1, fα, sα, ~q,~k1,Tα} into the
inequality (4.98) yields

0 ≥ σE + ρ1
`̄f

B

1 + ρ2
`̄f

B

2 + ρ1~u
B
1 · grad(f̄1 − f̄2) + r̄1(f

E
1 − fE

2 ) + rE
1 (f̄1 − f̄2)

+ r̄1(f̄1 − f̄2) + (ρ1s̄1 + ρ2s̄2)T̀
B + ρ1(s̄1 − s̄2)~g · ~uB

1 +
~̄q · ~g
T

− (T̄1 + T̄2)
.. DB −

(
T̄1 − ρ1

ρ2

T̄2

)
.. DB

1 +

(
1 +

ρ1

ρ2

)
~̄k1 · ~uB

1

+
1

2

(
1 +

ρ1

ρ2

)2

r̄1(~u
B
1 )2 , (4.114)

where for brevity we introduced quantity σE, which is equal to the right-hand side of
(4.98) with {r1, fα, sα, ~q,~k1,Tα} replaced by {rE

1 , fE
α , sE

α , ~qE, ~kE
1 ,TE

α}. To be able to make
use of the entropy inequality (4.114), let us remind the balance of mass of a mixture
(3.29), which now reads

ρ̀1
1 + ρ̀2

2 + ρ1div~v1 + ρ2div~v2 = 0 ,

and can be rewritten as

∂(ρ1 + ρ2)

∂t
+ div(ρ1~v1 + ρ2~v2) = 0 ,

or, in terms of the mixture density ρ = ρ1 + ρ2 and the barycentric velocity ~vB (2.12),

∂ρ

∂t
+ div(ρ~vB) = 0 .
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Finally, with the use of the incompressibility condition (4.105), we arrive at a constraint
for ~vB:

div~vB = 0 , (4.115)

or expressed in terms of the symmetric part of the velocity gradient DB:

trDB = 0 . (4.116)

Thus the mass balance of a mixture under the incompressibility condition (4.105)
constrains DB by (4.116). Since the rest of the independent variables in (4.114) is not
constrained by the remaining balance laws, (linear momentum, angular momentum and
energy), conditions (4.105) and (4.116) represent the only additional restrictions on the
admissible thermodynamic process.

In accordance with the rational-thermodynamics approach, we assert that the inequal-
ity (4.114) holds for all admissible thermodynamic processes. By a special choice of the
independent variables and considering the fact that the reaction set is closed under scalar
multiplications, we obtain restrictions on the reaction functionals.

Let T̀B = 0, ~uB
1 = ~g = ~0, DB = DB

1 = 0 and the remaining variables be arbitrary,
then the inequality (4.114) reads

0 ≥ σE + ρ1
`̄f

B

1 + ρ2
`̄f

B

2 + r̄1(f
E
1 − fE

2 ) + rE
1 (f̄1 − f̄2) + r̄1(f̄1 − f̄2) . (4.117)

The assumption that the reaction set is closed to scalar multiplication asserts that

0 ≥ σE + λ
(
ρ1

`̄f
B

1 + ρ2
`̄f

B

2 + r̄1(f
E
1 − fE

2 ) + rE
1 (f̄1 − f̄2)

)
+ λ2

(
r̄1(f̄1 − f̄2)

)
,

(4.118)
for arbitrary real λ. Moreover we will assume that

f̄1 = f̄2 . (4.119)

Note: This choice is motivated by the discussion in Gurtin & Guidugli [5] where, in a
one-component material, the reaction functional for the free energy was automatically
set equal to zero. Here the assumption (4.119) for a 2-component mixture is somewhat
weaker, however, needed for the following considerations.
The inequality (4.118) then reads

0 ≥ σE + λ(ρ`̄f
B

1 + r̄1(f
E
1 − fE

2 )) ,

and it holds for any real λ. Thus

0 ≡ ρ`̄f
B

1 + r̄1(f
E
1 − fE

2 ). (4.120)

The entropy inequality (4.114) is now reduced to

0 ≥ σE + (ρ1s̄1 + ρ2s̄2)T̀
B + ρ1(s̄1 − s̄2)~g · ~uB

1 +
~̄q · ~g
T

− (T̄1 + T̄2)
.. DB

−
(
T̄1 − ρ1

ρ2

T̄2

)
.. DB

1 +

(
1 +

ρ1

ρ2

)
~̄k1 · ~uB

1 +
1

2

(
1 +

ρ1

ρ2

)2

r̄1(~u
B
1 )2 .

(4.121)
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It will be convenient to rewrite (4.121) as:

0 ≥ σE +
(
r̄1, s̄1, s̄2, ~̄q, ~̄k1, T̄1, T̄2

)
?


1

2

(
1 +

ρ1

ρ2

)2

(~uB
1 )2, ρ1T̀

B + ρ1~g · ~uB
1 ,

ρ2T̀
B − ρ1~g · ~uB

1 ,
~g

T
,

(
1 +

ρ1

ρ2

)
~uB

1 , −DB −DB
1 , −DB +

ρ1

ρ2

DB
1

)
,

where the operation ? has the following meaning:
(
a,~b, c

)
? (d,~e, f) = ad + ~b · ~e + c .. f ,

for a, d scalars, ~b,~e vectors, c, f second-order tensors. The assumption that the reaction
set is closed to scalar multiplication asserts that

0 ≥ σE + λ
(
r̄1, s̄1, s̄2, ~̄q, ~̄k1, T̄1, T̄2

)
?


1

2

(
1 +

ρ1

ρ2

)2

(~uB
1 )2, ρ1T̀

B + ρ1~g · ~uB
1 ,

ρ2T̀
B − ρ1~g · ~uB

1 ,
~g

T
,

(
1 +

ρ1

ρ2

)
~uB

1 , −DB −DB
1 , −DB +

ρ1

ρ2

DB
1

)
,

for any real λ. This immediately yields

0 ≡
(
r̄1, s̄1, s̄2, ~̄q, ~̄k1, T̄1, T̄2

)
?


1

2

(
1 +

ρ1

ρ2

)2

(~uB
1 )2, ρ1T̀

B + ρ1~g · ~uB
1 ,

ρ2T̀
B − ρ1~g · ~uB

1 ,
~g

T
,

(
1 +

ρ1

ρ2

)
~uB

1 , −DB −DB
1 , −DB +

ρ1

ρ2

DB
1

)
.(4.122)

The reactions
{
r̄1, f̄α, s̄α, ~̄q, ~̄k1, T̄α

}
are functions of {ρ1, ρ2,F1,F2, T} only, see

(4.113), hence, for special choices of ~uB
1 , ~g,D,DB

1 , T̀ , we obtain:

• for ~uB
1 = ~g = ~0, DB = DB

1 = 0, remaining variables are arbitrary:

0 ≡
(
r̄1, s̄1, s̄2, ~̄q, ~̄k1, T̄1, T̄2

)
?

(
0, ρ1T̀

B, ρ2T̀
B, ~0, ~0, 0, 0

)
,

thus
ρ1s̄1 + ρ2s̄2 ≡ 0 , (4.123)

and (4.122) now reads

0 ≡
(
r̄1, s̄1, s̄2, ~̄q, ~̄k1, T̄1, T̄2

)
?


1

2

(
1 +

ρ1

ρ2

)2

(~uB
1 )2, ρ1~g · ~uB

1 ,−ρ1~g · ~uB
1 ,

~g

T
,

(
1 +

ρ1

ρ2

)
~uB

1 , −DB −DB
1 , −DB +

ρ1

ρ2

DB
1

)
, (4.124)
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• for ~g = ~0, DB = DB
1 = 0, remaining variables are arbitrary:

0 ≡
(
r̄1, s̄1, s̄2, ~̄q, ~̄k1, T̄1, T̄2

)
?


1

2

(
1 +

ρ1

ρ2

)2

(~uB
1 )2, 0, 0, ~0,

(
1 +

ρ1

ρ2

)
~uB

1 , 0, 0


 ,

thus

0 ≡ ~uB
1 ·


1

2

(
1 +

ρ1

ρ2

)2

~uB
1 r̄1 +

(
1 +

ρ1

ρ2

)
~̄k1


 .

Since ~uB
1 is arbitrary and the reactions are independent of ~uB

1 , we find:

r̄1 ≡ 0 , (4.125)

~̄k1 ≡ ~0 . (4.126)

In view of (4.125), equation (4.120) yields

`̄f
B

1 ≡ 0 ,

thus in view of (4.119):

f̄1 ≡ f̄2 ≡ const. ,

in order to keep the reaction functional closed to scalar multiplication (at each time),
we must put

f̄1 ≡ f̄2 ≡ 0 . (4.127)

Now (4.124) reduces to

0 ≡
(
s̄1, s̄2, ~̄q, T̄1, T̄2

)
?

(
ρ1~g · ~uB

1 ,−ρ1~g · ~uB
1 ,

~g

T
, −DB −DB

1 , −DB +
ρ1

ρ2

DB
1

)
,

(4.128)

• for ~g = ~0, DB = 0, remaining variables are arbitrary:

0 ≡
(
s̄1, s̄2, ~̄q, T̄1, T̄2

)
?

(
0, 0, ~0, −DB

1 ,
ρ1

ρ2

DB
1

)
,

thus

T̄1 ≡ ρ1

ρ2

T̄2, (4.129)

and (4.128) reduces to

0 ≡
(
s̄1, s̄2, ~̄q, T̄1, T̄2

)
?

(
ρ1~g · ~uB

1 ,−ρ1~g · ~uB
1 ,

~g

T
, −DB, −DB

)
, (4.130)
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• for ~uB
1 = ~0 , DB = 0, remaining variables are arbitrary:

0 ≡
(
s̄1, s̄2, ~̄q, T̄1, T̄2

)
?

(
0, 0,

~g

T
, 0, 0

)
,

thus since ~g is arbitrary and the reactions are independent of it,

~̄q ≡ ~0 , (4.131)

and (4.130) reduces to

0 ≡
(
s̄1, s̄2, T̄1, T̄2

)
?

(
ρ1~g · ~uB

1 ,−ρ1~g · ~uB
1 , −DB, −DB

)
, (4.132)

• for DB = 0, remaining variables are arbitrary:

0 ≡
(
s̄1, s̄2, T̄1, T̄2

)
?

(
ρ1~g · ~uB

1 ,−ρ1~g · ~uB
1 , 0, 0

)
,

thus since ~g and ~uB
1 are arbitrary and the the reactions are independent of them,

we have
s̄1 ≡ s̄2 , (4.133)

which together with (4.123) immediately yields

s̄1 ≡ 0 , (4.134)

s̄2 ≡ 0 , (4.135)

and (4.132) reduces to

0 ≡
(
T̄1, T̄2

)
?

(
−DB, −DB

)
, (4.136)

or
(T̄1 + T̄2)

.. DB ≡ 0 . (4.137)

The tensor DB does not have arbitrary values, but according to (4.116), it must be
trace-free:

trDB = DB .. 1 ≡ 0 ,

thus (4.137) will be satisfied for any

T̄1 + T̄2 ≡ −p1 ,

where p is an arbitrary scalar. According to (4.129) we obtain

T̄1 ≡ −p
ρ1

ρ
1 , (4.138)

T̄2 ≡ −p
ρ2

ρ
1 . (4.139)
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In summary, we have found that the form of the reaction functionals in our 2-component
mixture, for the constraint (4.105), are of the form

{
r̄1, f̄α, s̄α, ~̄q, ~̄k1, T̄1, T̄2

}
=

{
0, 0, 0, ~0, ~0, −pw1, −p(1− w)1

}
, (4.140)

where p is an arbitrary scalar and w is the water mass-fraction.

Now, with the help of the incompressibility condition (4.105), we can further reduce

the constitutive equations for the extra functionals (see (4.106)): {rE
1 , fE

α , sE
α , ~qE, ~kE

1 ,TE
α}.

In the case of {rE
1 , fE

α , sE
α , ~qE} we only omit the dependence on ρ, since ρ is now a constant

parameter. In the case of ~kE
1 , we can moreover replace ~h1 by definition (3.81):

~h1 = grad ρ1

= ρ gradw , (4.141)

and write
~k1 = −ξ(T )~g − ν(T ) ~u1 − ρω(T ) grad w . (4.142)

More information can be obtained about the extra stress functionals TE
1 , TE

2 .

• TE
1

According to (4.85), we have (omitting the dependence on ρ)

TE
1 = T̃1(~hγ,Dγ,Ω1, ~u1, T,~g) + wT̂1(~hγ,Dγ,Ω1, ~u1, T,~g) . (4.143)

The case w = 0 corresponds to pure ice, where no extra ”water-stress” should be
exerted, thus we assert

TE
1 |w=0 ≡ 0 , (4.144)

and conclude
TE

1 = wT̂1(~hγ,Dγ,Ω1, ~u1, T,~g). (4.145)

• TE
2

According to (4.86), we have

TE
2 = T̃2(~hγ,Dγ,Ω1, ~u1, T,~g) + wT̂2(~hγ,Dγ,Ω1, ~u1, T,~g) . (4.146)

We split the tensor T̃2 into the isotropic and deviatoric part,

T̃2 = −Π2(~hγ,Dγ,Ω1, ~u1, T,~g)1 +
◦̃
T2(~hγ,Dγ,Ω1, ~u1, T,~g) . (4.147)

For w = 0, the constitutive equation for T2 must be reduced to that valid for pure
ice (Peterson [7]), i.e. it must hold

◦
T2

∣∣∣∣
w=0

= B(T )h(
◦

D2II)
◦
D2 , (4.148)
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where B(T ) is a temperature-dependent function and
◦
D2II is the second invariant

of the strain deviator
◦
D2.

In view of (4.112) and (4.140), we have

T2 = −p(1− w)1 + TE
2 . (4.149)

Using (4.146) and (4.147), equation (4.148) implies that

◦̃
T2 = B(T )h(

◦
D2II)

◦
D2 . (4.150)

At this moment it is worthwhile to make the following remark. The stress – strain-
rate relation in pure ice is often considered in the form (2.8):

D2 = A(T )f (σ)
◦
T2 , (4.151)

where

σ =

√
1

2
tr(

◦
T2)2. (4.152)

This includes the assumption on the incompressibility of pure ice, that is

◦
D2 = D2 .

Hence the relation (4.151) may also be written as

◦
D2 = A(T )f (σ)

◦
T2 . (4.153)

We now intend to express the inverse relation, i.e. to express
◦
T2 as a function of

◦
D2 and its invariants. The double-dot product of (4.153) is

◦
D2

..
◦
D2 = (A(T )f (σ))2

◦
T2

..
◦
T2 . (4.154)

Using the definition of the second invariant of a second-order tensor Y (see e.g.
Marš́ık [8]):

YII = −1

2

(
trY2 − (trY)2

)
,

and considering (4.152), we obtain

◦
D2II = −(A(T )f (σ))2σ2 .

Provided that the function f (σ) is invertible2, we may express σ by means of
◦
D2II

and T . As a result, we have

◦
T2 = B(T )h(

◦
D2II)

◦
D2 . (4.155)

2The usual form of the function f(σ) is according to the Glen’s flow law (see e.g. Paterson [7])
f(σ) = σn, n = 3.
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The expression (4.150) will only be used in theoretical treatment since T is chosen
to be the dependent variable. However, in numerical implementation (Chapter 6),
we will apply the inverse relation.

Using (4.150), we can write (4.146) as

TE
2 = −Π2(~hγ,Dγ,Ω1, ~u1, T,~g)1 + B(T )h(

◦
D2II)

◦
D2

+ wT̂2(~hγ,Dγ,Ω1, ~u1, T,~g) .

To summarize, the constitutive equations of ice-water mixture, after applying the
partial linearization, the entropy principle, and the incompressibility constraint, and
requiring that the model of ice-water mixture reduces to the model of pure ice in the limit
w → 0, we have

r1 = r̃
(0)
1 (T ) + wr̂

(0)
1 (T ) + r̃

(1)
1 (T ) trD1 + r̃

(2)
1 (T ) trD2 , (4.156)

fα = f̃α(T ) + wf̂α(T ) , (4.157)

sα = s̃α(T ) + wŝα(T ) , (4.158)

~q = −k(T )~g − λ(T )~u1 , (4.159)

~k1 = −ξ(T )~g − ν(T )~u1 − ρω(T ) grad w , (4.160)

T1 = −pw 1 + wT̂1(~hγ,Dγ,Ω1, ~u1, T,~g) , (4.161)

T2 = −p(1− w)1 − Π2(w,~hγ,Dγ,Ω1, ~u1, T,~g)1 + B(T )h(
◦

D2II)
◦
D2

+ wT̂2(~hγ,Dγ,Ω1, ~u1, T,~g) , (4.162)

α, γ = 1, 2 .

4.6 Balance equations in the water-ice mixture

In this section, we will investigate the balance laws in the ice-water mixture using the
constitutive equations (4.156)-(4.162).

4.6.1 Mass balance

The ice component
From the general mass-balance law (3.28) for mixture components we obtain

∂ρ2

∂t
+ grad ρ2 · ~v2 + ρ2 div~v2 = r2 .

Since
r2 = −r1 ,

as follows from (3.32), we can write

∂{ρ(1− w)}
∂t

+ grad {ρ(1− w)} · ~v2 + ρ(1− w) div~v2 = −r1 .
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Assuming ρ constant, we further have

∂w

∂t
+ grad w · ~v2 − (1− w) div~v2 =

r1

ρ
. (4.163)

The water component
The mass balance for the water component reads

∂ρ1

∂t
+ grad ρ1 · ~v1 + ρ1 div~v1 = r1 ,

or,
∂(ρw)

∂t
+ grad (ρw) · ~v1 + ρw div~v1 = r1 ,

and assuming additionally ρ to be constant, we have

∂w

∂t
+ grad w · ~v1 + w div~v1 =

r1

ρ
. (4.164)

Since the independent field variables are the ice velocity ~v2 and the diffusion velocity
~u1 = ~v1 − ~v2, equation (4.164) will be further rearranged by (4.163):

grad w · (~v1 − ~v2) + div~v2 + w div (~v1 − ~v2) = 0 ,

or
grad w · ~u1 + div~v2 + w div ~u1 = 0 . (4.165)

4.6.2 Linear momentum balance

The ice component
With the use of the general linear momentum balance for a mixture component (3.39),
we arrive at

ρ2
D2 ~v2

Dt
= div T2 + ρ2

~b2 + ~k2 .

The only volume force ~b present in our problem is gravity, thus ~b1 = ~b2 = ~gF . Using

~k2 = −~k1 − r1~u1 ,

following from (3.43), and using (4.160), we obtain

ρ(1− w)
D2 ~v2

Dt
= divT2 + ρ(1− w)~gF + ξ~g + ν~u1 + ρω grad w − r1~u1 .

(4.166)

The water component
Similarly, for the water component:

ρ1
D1 ~v1

Dt
= div T1 + ρ1

~b1 + ~k1 ,
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or, if we express ~b1 and ~k1 from (4.160), we obtain

ρw
D1 ~v1

Dt
= div T1 + ρw~gF − ξ~g − ν~u1 − ρω grad w . (4.167)

Note that neither here, nor in the previous case of ice momentum balance, we do not
expand all the terms (e.g. stress tensors) according to their constitutive equations. This
is done for the sake of brevity, because several further reductions of the system of balance
equations will be done in the next section.

4.6.3 The angular momentum balance

The angular momentum balance (3.47) implies the symmetry of the constitutive functio-
nals for T1 and T2:

T1 = TT
1 , T2 = TT

2 ,

which, in view of (4.161) and (4.162) means

T̂1 = T̂T
1 , and T̂2 = T̂T

2 . (4.168)

4.6.4 The energy balance

As discussed before, we are dealing only with the energy balance of the mixture as a
whole. This, according to (3.64), has the form

ρ1
D1ε1

Dt
+ ρ2

D2ε2

Dt
= T1

.. D1 + T2
.. D2 − div ~q − r1ε1 − r2ε2

− ~v1 · ~k1 − ~v2 · ~k2 − 1

2
r1~v

2
1 − 1

2
r2~v2 ,

where we do not consider any internal heating Q. By (3.67), it holds

~v1 · ~k1 + ~v2 · ~k2 +
1

2
r1~v

2
1 +

1

2
r2~v2 = ~u1 · ~k1 +

1

2
r1~u

2
1 .

By (3.32), it holds
r2 = −r1 .

Hence, using the constitutive equations for ~q, see (4.159), and ~k1, see (4.160), we arrive
at

ρw
D1ε1

Dt
+ ρ(1− w)

D2ε2

Dt
= T1

.. D1 + T2
.. D2 + div (k ~g + λ~u1) − r1 (ε1 − ε2)

+ ~u1 · (ξ ~g + ν ~u1 + ρω grad w) − 1

2
r1~u

2
1 . (4.169)

4.7 Further reductions of the balance equations

4.7.1 Motivation

Our aim is to obtain a set of equations describing the most important physical features of
the temperate-ice zone and to solve it numerically for a 2-D case with a simple geometry to
study the role of particular processes involved. To achieve this aim, we introduce several
additional simplifications.
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4.7.2 Mass balance

We will neglect the term w div~v2 in the mass balance of the component ice (4.163), since
it is small compared to div~v2, and write

∂w

∂t
+ grad w · ~v2 − div~v2 =

r1

ρ
. (4.170)

The mass balance of water (4.165) will be kept unchanged

grad w · ~u1 + div~v2 + w div ~u1 = 0 . (4.171)

4.7.3 Linear momentum balance

We start with the linear momentum balance for the water component (4.167):

ρw
D1 ~v1

Dt
= div T1 + ρw~gF − ξ~g − ν~u1 − ρω grad w . (4.172)

In the first approximation, we omit the inertia term on the left-hand side and the term
div(w T̂1) occuring in the expansion

divT1 = div(−pw 1 + w T̂1).

Hence, we arrive at

ν~u1 = −grad(pw) − ξ~g − ρω grad w + ρw~gF (4.173)

which may be interpreted as the equation for the diffusive water velocity ~u1.

The linear momentum balance for the ice component (4.166) reads,

ρ(1− w)
D2 ~v2

Dt
= divT2 + ρ(1− w)~gF + ξ~g + ν~u1 + ρω grad w − r1~u1.

(4.174)

We again neglect the inertia term on the left-hand side and also the term r1~u1, correspond-
ing to linear-momentum change induced by the mass exchange between the components.
We further expand T2, according to (4.162):

T2 = −p(1− w)1 − Π21 + B(T )h(
◦

D2II)
◦
D2 + wT̂2 .

Since the constitutive functional for the thermodynamic pressure Π2 is not known, we
neglect Π2 term and keep only the reaction pressure p. Following (Larson, [9]), we specify
the constitutive functional T2 by substituting

B(T )h(
◦

D2II)
◦
D2 + wT̂2 −→ B(T, w)h(

◦
D2II)

◦
D2 ,

where B is assumed to be linear in w. Hence, (4.174) becomes

~0 = grad(pw) + ξ~g + ν~u1 + ρωgradw − ρw~gF

− gradp + div(B(T, w)h(
◦

D2II)
◦
D2) + ρ~gF ,

which, due to (4.173), reads

~0 = −gradp + div(B(T, w)h(
◦

D2II)
◦
D2) + ρ~gF . (4.175)
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4.7.4 Energy balance

Let us recall the constitutive equations for free energy and entropy. By (4.157) and
(4.158), we have

fα = f̃α(T ) + wf̂α(T ) , (4.176)

sα = s̃α(T ) + wŝα(T ) . (4.177)

For the following derivations, it will be convenient to omit the terms f̂α, ŝα. This step can
only be justified in view of the approach commonly applied in glaciology, that internal
energy and entropy only depend on temperature. In fact, there is not any knowledge of
possible dependencies on the omitted functions. Thus, we will consider

fα = fα(T ) , (4.178)

sα = sα(T ) , (4.179)

where we omitted the˜label.
On the left-hand side of the equation (4.169), we neglect terms ρw ὲ1

1, ρw ὲ2
2, being

small compared to ρ ὲ2
2 . We expand

T1
.. D1 + T2

.. D2 = (−pw1 + wT̂1)
.. D1 +

(
−p(1− w)1 + B(T, w)h(

◦
D2II)

◦
D2

)
.. D2

= −pw div~u1 − p div~v2 + wT̂1
.. D1 + B(T, w)h(

◦
D2II)

◦
D2

..
◦
D2 ,

where we have already omitted the term Π21 from the same reasons as before, and made
use of ◦

D2
.. D2 =

◦
D2

..
◦

D2 ,

which follows from the fact that the deviator
◦

D2 is traceless. Moreover, we will neglect
the work wT̂1

.. D1 and the term corresponding to the kinetic energy changes 1
2
r1~u

2
1. We

will use (4.173) and write

~u1 · (ξ~g + ν~u1 + ρω gradw) = ~u1 · (−grad(pw) + ρw~gF ) .

The equation (4.169) becomes

ρ
D2ε2

Dt
= − pw div~u1 − p div~v2 + B(T, w)h(

◦
D2II)

◦
D2

..
◦
D2 + div(k~g + λ~u1)

− r1(ε1 − ε2) + ~u1 · (−grad(pw) + ρw~gF ) . (4.180)

Ice in the temperate zone is by definition at the melting temperature TM . Despite the
fact that the ice-water mixture is treated as an incompressible material, we assume, that
the melting temperature can be determined by the Clausius-Clapeyron relation,

TM = TM(p). (4.181)

By (4.181), we implicitly assume that the mixture is close to the thermodynamic equilib-
rium, since relation (4.181) follows from the equilibrium analysis, namely from equality
of chemical potentials. Strictly speaking, relation (4.181) is correct only in compressible
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fluids (see Hutter [4]), the term −p1 then denotes the total equilibrium stress. Adopting
such a relation in our particular case, with the incompressibility involved, can only be jus-
tified by assuming the incompressible model to be an approximation of a material model
with very low compressibility. Such interpretation may justify the Clausius-Clapeyron re-
lation, in (4.181) we moreover replaced the total equilibrium stress by only −p1, where p is
the reaction pressure. We are not able to quantitatively estimate the mistake introduced
by such an assumption, but, following (Hutter [4]), we expect it to be small.

As according to (3.74)
εα = fα + T sα ,

and according to (4.178), (4.179),

εα = εα(T ) , (4.182)

we have
D2ε2

Dt
= cρ

D2TM(p)

Dt
, (4.183)

where we introduced

cρ =
dε2

dT
. (4.184)

The energy balance (4.180) can now be rewritten as a constitutive relation for the water
production term r1

r1(ε1 − ε2) = − div(pw~u1) − p div~v2 + B(T, w)h(
◦

D2II)
◦
D2

..
◦
D2 + div(k~g + λ~u1)

− ρcρ
D2TM(p)

Dt
+ ρw~u1 · ~gF . (4.185)

This form of the energy balance is already satisfactory, however, following the common
approach in glaciology, we intend to rewrite the difference ε1 − ε2 in terms of the latent
heat. To do that, consider a system which contains ice mass m of volume V2, which melts
to water of the same mass and volume V1. Let us denote the internal energy and entropy
of the ice mass by U2, S2, and of the water mass by U1, S1, respectively. We assume that
the ice temperature before melting and the water temperature are equal and if we assume
that the process of melting was quasi-static, i.e. the ice-water system was during the
process in thermodynamic equilibrium, the first law of thermodynamics (Kvasnica [12])
states that

[U ] = T [S]−W ,

where
[U ] = U1 − U2 , [S] = S1 − S2 ,

and W is the mechanical work performed by the system during the process of melting.
If the system is in thermodynamic equilibrium, then the equilibrium stress reduces to
pressure, which can be shown to be continuous across the surface of phase equilibrium (see
(3.39) and note that in equilibrium the velocities and surface linear momenta production
terms are equal to zero), and we thus arrive at

[U ] = T [S]− p[V ] ,
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or dividing this equation by the mass m

[ε] = T [s]− p

[
1

ρ̃

]
, (4.186)

where ε is the internal energy density (related to mass),

T [s] = L (4.187)

is the specific latent heat of melting and ρ̃ denotes the ”material” density.
Thus under the simplifying assumptions (quasi-static melting, equilibrium pressure

equal to the reaction stress), we arrive at

r1 =
1

(L− p∆)

{
− div(pw~u1) − p div~v2 + B(T, w)h(

◦
D2II)

◦
D2

..
◦
D2 + div(k~g + λ~u1)

− ρcρ
D2TM(p)

Dt
+ ρw~u1 · ~gF

}
, (4.188)

where we introduced

∆ =
1

ρ̃1

− 1

ρ̃2

. (4.189)
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Chapter 5

The polythermal ice-sheet model

The aim of this chapter is to summarize the knowledge obtained so far, introducing the
boundary and transition conditions and set up the description of a typical polythermal
ice-sheet configuration as depicted in Fig. 2.1.

5.1 Field equations

5.1.1 Cold region

For the cold-ice zone we adopt the traditional formulation as summarized in the first
chapter. The mass balance, the linear momentum balance and the internal energy balance
read

div~v = 0 , (5.1)

ρ~̇v = −grad p + div
◦
T + ρ~gF , (5.2)

ρε̇ = T .. D − div ~q , (5.3)

with the constitutive relations

T = −p1 +
◦
T , (5.4)

ε = cV T , (5.5)

~q = −k(T ) grad T , (5.6)

D = A(T )f (σ)
◦
T . (5.7)

5.1.2 The temperate ice region

In the previous chapter, we arrived at the set of equations for the temperate ice-zone
behaviour in the view the mixture theory. Namely, two mass balance laws (4.170), (4.171):

∂w

∂t
+ grad w · ~v2 − div~v2 =

r1

ρ
, (5.8)

grad w · ~u1 + div~v2 + w div ~u1 = 0 , (5.9)

69
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two linear momentum balance laws (4.173) and (4.175):

ν~u1 = −grad(pw) − ξ~g − ρω grad w + ρw~gF (5.10)

~0 = −gradp + div
(
B(T, w)h(

◦
D2II)

◦
D2

)
+ ρ~gF , (5.11)

and the energy balance (4.188)

r1 =
1

(L− p∆)

{
− div(pw~u1) − p div~v2 + B(T, w)h(

◦
D2II)

◦
D2

..
◦
D2 + div(k~g + λ~u1)

− ρcρ
D2TM(p)

Dt
+ ρw~u1 · ~gF

}
. (5.12)

5.2 Boundary and transition conditions

So far we have assumed the investigated quantities are continuous, mostly also differen-
tiable. However, in the reality, e.g. inside glaciers, even in the ”smoothing” continuous
description, we can identify singular surfaces at which the constitutive functionals or ma-
terial parameters can undergo a finite jump. In this section, we will investigate the general
conditions for such jumps, as the consequence of the balance laws. We will also arrange
them to a form applicable in numerical computations. To complete the description, we
have to add appropriate boundary conditions, both on the free surface (ice-air boundary)
and at the base (ice-bedrock boundary). In all of the cases, we will use a similar approach.
The boundary will be considered as a singular surface, at which all components of the
mixture are present on both sides, but the density of some components may be tend to
zero. This unusual approach will enable the unification of the transition and boundary
conditions within the theoretical framework of Chapter 3 and provide the description of
physical processes at mixture boundaries.

5.2.1 Free surface

Atmosphere (+)
n

s

ν

Cold or temperate ice(-)

F (x,t) = 0

Figure 5.1: Free surface geometry.
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Free surface is a cold or temperate-ice – air boundary. The two cases differ according to
the processes that take place at the surface. At the cold-ice – air boundary accumulation
of the ice component due to snowfalls may occur, as well as ablation. At the temperate-ice
– air boundary we may, in addition, expect melting or refreezing of the meltwater. Due to
these processes, a free surface is generally not material and therefore kinematic conditions
have to be introduced to determine its evolution.

Let us assume that the points of the free surface at time t in the present configuration
are given by an implicit equation

FS(~x, t) = 0 (5.13)

for a certain function FS. Let

St = {~x ∈ E3 : FS(~x, t) = 0}

be the free surface at time t. Let us assume that there exist a one-parametric one-to-one
mapping

χS : S0 × E −→ St ,

such that for any ~x ∈ St there exists ~x0 ∈ S0 that

~x = χS(~x0, t) .

Then we can define the surface velocity ~ν (the mapping is assumed to be sufficiently
smooth) by

~ν =
∂χS(~x0, t)

∂t

∣∣∣∣∣
~x0

. (5.14)

The time derivative at constant ~x0 of the implicit equation (5.13) then yields

∂FS

∂t
+ ~ν · gradFS = 0 , (5.15)

which is the evolution equation for the free surface. It might be convenient to rewrite this
equation as

∂FS

∂t
+ ~v−2 · gradFS = (~v−2 − ~ν) · gradFS , (5.16)

where ~v−2 is the ice velocity on the negative side of the surface, the orientation being
determined by the unit vector ~n:

~n(~x, t) =
gradFS(~x, t)

‖gradFS(~x, t)‖ , ~x ∈ St , (5.17)

which points, by definition, from the negative to positive side of St. With the use of ~n,
equation (5.16) can be also written as

∂FS

∂t
+ ~v−2 · gradFS = (~v−2 − ~ν) · ~n ‖gradFS‖ . (5.18)
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The evolution equation (5.15) represents a kinematic constraint for the free surface.
Apart from that, the analysis of the balance laws yields a set of dynamic constraints.

Mass jump conditions
The free surface will be considered as a singular surface in the water-ice-air mixture
(α = 1, 2, 3, respectively). We will assume that air at the negative side of the free surface
(in glacier) is highly diluted, and its density is sufficiently small that it cannot affect the
behaviour of the ice-water mixture. To express that, we will here and henceforth adopt
the following notation

ρ−3 → 0 . (5.19)

By this assumption we can apply the mixture theory (see Chapter 3) to a 3-component
mixture, formulate the boundary conditions at the free surface as the interface conditions
at a singular surface in the mixture. The densities ρ+

1 and ρ+
2 , of water and ice in the

atmosphere, are assumed to be small, but cannot be put equal to zero since it would
contradict the accumulation or ablation process on the free surface.

The above formulation is applied to the temperate ice–air boundary. The cold ice–air
boundary will be represented by a singular surface at which ρ−1 → 0 (water is not present
in the glacier).

The general form of the mass jump conditions at a singular surface, following from
the mass balance of a n-component mixture (3.28), (3.32) reads

[ρα(~vα − ~ν)]+− · ~n = rs
α ,

n∑

α=1

rs
α = 0 . (5.20)

At the free surface we further assume that there is not surface air production,

rs
3 ≡ 0 . (5.21)

Eq. (5.20) then implies that
rs
1 = −rs

2 , (5.22)

where the surface production terms rs
1 and rs

2 represent the mass exchange between the
ice and water component, i.e. melting or refreezing of ice at the free surface.

The ice component
The jump condition (5.20) for the ice component (α = 2) reads

[ρ2(~v2 − ~ν)]+− · ~n = rs
2 . (5.23)

The term ρ+
2 (~v2−~ν)+ ·~n, means the mass influx or outflow of ice through the free surface

from glacier to the atmosphere (per unit time and unit surface). We usually do not have
information about ρ+

2 and ~v+
2 separately, but their product can be measured by a so-called

free-surface ice ablation-accumulation function (positive for ablation):

as
2⊥ = ρ+

2 (~v+
2 − ~ν) · ~n . (5.24)

With (5.24), equation (5.23) becomes

ρ−2 (~v−2 − ~ν) · ~n = as
2⊥ − rs

2 , (5.25)
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or expressed in terms of the water content w and ice-water mixture density ρ, we have

(1− w−)(~v−2 − ~ν) · ~n =
as

2⊥ − rs
2

ρ
. (5.26)

The water component
The jump condition (5.20) for water (α = 1) reads:

[ρ1(~v1 − ~ν)]+− · ~n = rs
1. (5.27)

Introducing the free-surface water accumulation function by as
1⊥:

as
1⊥ = ρ+

1 (~v+
1 − ~ν) · ~n . (5.28)

Equation (5.27) becomes
ρ−1 (~v−1 − ~ν) · ~n = as

1⊥ − rs
1 . (5.29)

In the following, we put
as

1⊥ = rs
1 , (5.30)

which means that all the water outflow to the atmosphere comes from the ice melted at
the free surface. In other words evaporation or liquid precipitation is not considered. In
view of (5.30), eq. (5.27) reads

ρ−1 (~v−1 − ~ν) · ~n = 0 , (5.31)

or, equivalently,
ρw−(~v−2 − ~ν) · ~n + ρw−~u−1 · ~n = 0 .

Substituting for (~v−2 − ~ν) · ~n from (5.26), we find

w−as
2⊥ − rs

2

1− w− + ρw−~u−1 · ~n = 0 . (5.32)

Provided that w− 6= 0 (only possible at the temperate-ice – air boundary), we obtain

~u−1 · ~n =
rs
2 − as

2⊥
ρ(1− w−)

. (5.33)

The air component
Considering jump condition (5.20) and assuming that there is no air mass flux through
the free surface into the glacier, in accordance with (5.19), that is

ρ−3 (~v−3 − ~ν) · ~n = 0 , (5.34)

we obtain
ρ+

3 (~v+
3 − ~ν) · ~n = 0 . (5.35)
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As mentioned above, the mass jump condition for the case of a cold-ice–air boundary
is only a special case of the condition on a temperate-ice – air boundary. We additionally
assume that rs

1 = rs
2 = 0, i.e. there is no surface melting or refreezing (the ice is bellow

melting temperature), and also ρ−1 → 0, i.e. w− → 0. Then the mass balance for the ice
component (5.26) reads

(~v−2 − ~ν) · ~n =
as
⊥
ρ

, (5.36)

mass balance for the water component (5.27) concerning (5.30) is satisfied identically, and
for the air component (5.34) and (5.35) remain unaltered.

Linear momentum jump conditions
The general form of these conditions follows from (3.39) and (3.43):

[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n = −~f s
α ,

n∑

α=1

~f s
α = ~0 . (5.37)

Due to the simplifications we have introduced for the stress constitutive equations, it is
sufficient to use only the linear momentum jump condition for the mixture as a whole:

n∑

α=1

[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n = ~0 .

Since the accumulation velocities at the free surface are small, we neglect the terms
[ρα~vα ⊗ (~vα − ~ν)]+− · ~n, corresponding to the linear momentum jumps across the free
surface. We arrive at

[T1 + T2 + T3]
+
− · ~n = 0 , (5.38)

Additionally, we will assume

T−
3 = 0 , (5.39)

since air is not considered to be present in the glacier. Likewise, for a cold-ice – air
boundary, we assume

T−
1 = 0 . (5.40)

Energy jump condition
At all singular surfaces, the free surface, the glacier bed and the cold-temperate ice tran-
sition surface (CTS), the temperature will be considered continuous,

[T ]+− = 0 . (5.41)

The energy jump condition for a mixture (3.64) is

[
n∑

α=1

{
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα

}
+ ~q

]+

−
· ~n = 0.
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For our case n = 3:

0 =
[
ρ1

(
ε1 +

1

2
~v2

1

)
(~v1 − ~ν) + ρ2

(
ε2 +

1

2
~v2

2

)
(~v2 − ~ν) + ρ3

(
ε3 +

1

2
~v2

3

)
(~v3 − ~ν)

− ~v1 ·T1 − ~v2 ·T2 − ~v3 ·T3 + ~q
]+

−
· ~n. (5.42)

Since the accumulation velocities velocities at the free surface are small, we neglect
1
2
(ρ1~v

2
1)
±, 1

2
(ρ2~v

2
2)
±, 1

2
(ρ3~v

2
3)
±, which describe the jump in kinetic energies. Moreover, ε1

and ε2 are functions of temperature only (see (4.182)) and the temperature is continuous
across the surface, which implies continuity of ε1, ε2 across the free surface, and (5.42)
reads:

0 = ε1 [ρ1(~v1 − ~ν)]+− · ~n + ε2 [ρ2(~v2 − ~ν)]+− · ~n + [ε3ρ3(~v3 − ~ν)]+− · ~n
− [~v1 ·T1 + ~v2 ·T2 + ~v3 ·T3]

+
− · ~n + [~q]+− · ~n .

Using (5.22), (5.23), (5.27), (5.34) and (5.35), we find:

0 = rs
2(ε2 − ε1) − [~v1 ·T1 + ~v2 ·T2 + ~v3 ·T3]

+
− · ~n + [~q]+− · ~n . (5.43)

The terms ~v±α ·T±
α · ~n represent the mechanical work of the rest of the mixture on the α

component at the singular surface (from (+) or (−) side). In view of this interpretation,
we can put

~v−3 ·T−
3 · ~n = 0 , (5.44)

keeping in mind the assumption that the air is not present at the negative side of the
surface, in the glacier.

In the special case of a cold-ice – air surface, in addition to the above conditions, it
holds ~v−1 · T−

1 · ~n = 0 . Moreover, the surface production terms rs
1 and rs

2 vanish (ice is
bellow melting temperature).

Entropy jump condition
The general condition (3.72) at the singular surface is

0 ≤
[

n∑

α=1

ραsα(~vα − ~ν) +
~q

T

]+

−
· ~n .

In accordance with Hutter [4], we further assume that the total surface entropy production
at the singular surface is equal to zero:

0 =

[
ρ1s1(~v1 − ~ν) + ρ2s2(~v2 − ~ν) + ρ3s3(~v3 − ~ν) +

~q

T

]+

−
· ~n . (5.45)

Since s1 and s1 are again continuous across the free surface, being functions of T only
(see (4.179)), we obtain:

0 = s1 [ρ1(~v1 − ~ν)]+− · ~n + s2 [ρ2(~v2 − ~ν)]+− · ~n + [s3ρ3(~v3 − ~ν)]+− · ~n +

[
~q

T

]+

−
· ~n .



76 CHAPTER 5. THE POLYTHERMAL ICE-SHEET MODEL

Using (5.22), (5.23), (5.27), (5.34) and (5.35), we finally have

0 = rs
2 T (s2 − s1) + [~q]+− · ~n . (5.46)

For a cold-ice – air surface, at which rs
1 = rs

2 = 0, this condition reduces to

0 = [~q]+− · ~n , (5.47)

that is the normal component of the heat flux is continuous across the cold-ice – air
surface.

5.2.2 Ice-bedrock interface

Cold or temperate ice (-)

n

ν

b

Lithosphere (+)

F (x,t) = 0

Figure 5.2: Ice-bedrock boundary.

The situation at the ice-bedrock interface is analogous to the situation at the free
surface. The interface lies between cold or temperate ice ((−) side of the interface), and
the bedrock ((+) side of the interface). The mixture approach is adopted again for a
three-component water-ice-bedrock mixture (α = 1, 2, 3, respectively). We consider the
limits

ρ+
2 → 0, ρ−3 → 0 , (5.48)

i.e. ice does dot penetrate into the bedrock and vice versa. Similar assumptions need not
be made for ρ+

1 , since we generally assume the bedrock to be permeable for water. The
above formulation describes the boundary with the temperate ice at one side, the case
with cold ice can be obtained by considering ρ−1 → 0 .

The kinematic equation for the ice-bedrock surface evolution is assumed to be defined
by a given function FB(~x, t). We also assume, that the surface velocity ~ν is again well
defined.

The dynamic constraints are derived from the balance as follows.

Mass jump condition
The mass jump conditions (3.28) and (3.32) are:

[ρα(~vα − ~ν)]+− · ~n = rb
α ,

n∑

α=1

rb
α = 0 . (5.49)
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We assume that the bedrock material is not produced at ice-bedrock interface, that is

rb
3 ≡ 0 . (5.50)

Thus, (5.49) yields
rb
1 = −rb

2 , (5.51)

where the surface production terms rb
1, rb

2, describe the mass exchange between ice and
water, caused by melting of ice of refreezing of water at the ice-bedrock interface.

Ice component
The general jump condition (5.49) for α = 2 reads

[ρ2(~v2 − ~ν)]+− · ~n = rb
2 . (5.52)

We will consider the bedrock is impermeable for ice, thus

ρ+
2 (~v+

2 − ~ν) · ~n = 0 . (5.53)

Hence it holds
ρ−2 (~v−2 − ~ν) · ~n = −rb

2 , (5.54)

or,
ρ(1− w−)(~v−2 − ~ν) · ~n = −rb

2 . (5.55)

Water component
The jump condition (5.49) for the water component (α = 1) reads

[ρ1(~v1 − ~ν)]+− · ~n = rb
1 (5.56)

We define function
ob
1⊥ = ρ+

1 (~v+
1 − ~ν) · ~n , (5.57)

that describes the outflow (inflow) of water from the glacier to the bedrock. Inspecting
(5.51), eq. (5.56) becomes

ρ−1 (~v−1 − ~ν) · ~n = ob
1⊥ + rb

2 , (5.58)

or, equivalently,
ρw−(~v−2 − ~ν) · ~n + ρw−~u−1 · ~n = ob

1⊥ + rb
2 . (5.59)

Using (5.55), we get

−rb
2

w−

1− w− + ρw−~u−1 · ~n = ob
1⊥ + rb

2 ,

ρw−~u−1 · ~n = ob
1⊥ +

rb
2

1− w− . (5.60)



78 CHAPTER 5. THE POLYTHERMAL ICE-SHEET MODEL

Bedrock-material component
The mass jump condition (5.49) the bedrock-material component (α = 3) reads

[ρ3(~v3 − ~ν)]+− · ~n = 0 . (5.61)

The bedrock-material does not penetrate to the glacier, hence

ρ−3 (~v−3 − ~ν) · ~n = 0 . (5.62)

Thus (5.61) yields
ρ+

3 (~v+
3 − ~ν) · ~n = 0 . (5.63)

Here again we summarize the above results for the special case of the cold-ice – bedrock
boundary, where, in addition, ρ−1 → 0, and rb

1 = rb
2 = 0, since the ice temperature is lower

than its melting point. The mass balance for the ice component (5.54) reduces to

ρ(~v−2 − ~ν) · ~n = 0 . (5.64)

The mass balance (5.60) for the water component simplifies to

ob
1⊥ = 0 . (5.65)

The mass balance (5.63) for the bedrock-material component remains unaltered.

Sliding law
At the ice-bedrock interface we also prescribe a relation between the ice sliding velocity

~v2sl, and the basal shear stress ~t2
−
‖ . The sliding velocity is defined as the tangential velocity

of ice relative to the bedrock:
~v2sl = ~v2

−
‖ − ~v3

+
‖ , (5.66)

where
~vα
±
‖ = ~vα

± − ~n( ~vα
± · ~n) .

The basal shear stress is defined as

~t2
−
‖ = T−

2 · ~n − ~n(~n ·T−
2 · ~n) .

The sliding law has then the form

~v2sl = −C(~n ·T−
2 · ~n, . . .)~t2

−
‖ . (5.67)

The form of function C() is a subject of discussion and experiments, since various different
types of sliding mechanisms may occur. The most simple approximation considers the
sliding function to be constant for the temperate-ice – bedrock boundary and zero for the
cold-ice – bedrock boundary (see Greve [6]).

Linear momentum jump conditions
The situation is analogous to the free surface, so we discuss it briefly. The linear momen-
tum jump conditions (3.39) and (3.43) read:

[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n = −~f b
α ,

n∑

α=1

~f b
α = ~0 . (5.68)
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We will again make use of only the linear momentum jump condition for the mixture as
a whole:

n∑

α=1

[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n = ~0 . (5.69)

We neglect the terms with [ρα~vα⊗ (~vα−~ν)]+− ·~n, that correspond to the linear momentum
jumps across the free surface since they are assumed to be small:

[T1 + T2 + T3]
+
− · ~n = 0 .

In view of the density limits (5.48):

T+
2 = T−

3 = 0 , (5.70)

and the linear momentum jump condition reads:

(T+
3 + T+

1 ) · ~n = (T−
1 + T−

2 ) · ~n . (5.71)

Energy jump condition
Analogously to the free surface, the temperature is considered continuous across ice-
bedrock interface:

[T ]+− = 0 . (5.72)

The general energy jump condition for the mixture (3.64) are

0 =

[
n∑

α=1

{
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα

}
+ ~q

]+

−
· ~n .

For a 3-component mixture:

0 =
[
ρ1

(
ε1 +

1

2
~v2

1

)
(~v1 − ~ν) + ρ2

(
ε2 +

1

2
~v2

2

)
(~v2 − ~ν) + ρ3

(
ε3 +

1

2
~v2

3

)
(~v3 − ~ν)

− ~v1 ·T1 − ~v2 ·T2 − ~v3 ·T3 + ~q
]+

−
· ~n.

We omit the terms 1
2
(ρ1~v

2
1)
±, 1

2
(ρ2~v

2
2)
±, 1

2
(ρ3~v

2
3)
±, describing jumps in kinetic energies,

and since ε1 and ε2 are continuous being functions of temperature only, we obtain

0 = ε1 [ρ1(~v1 − ~ν)]+− · ~n + ε2 [ρ2(~v2 − ~ν)]+− · ~n + [ε3ρ3(~v3 − ~ν)]+− · ~n
− [~v1 ·T1 + ~v2 ·T2 + ~v3 ·T3]

+
− · ~n + [~q]+− · ~n .

Using (5.51), (5.52), (5.56), (5.62) and (5.63):

0 = rb
2(ε2 − ε1) − [~v1 ·T1 + ~v2 ·T2 + ~v3 ·T3]

+
− · ~n + [~q]+− · ~n . (5.73)

The terms ~v±α · T±
α · ~n represent the mechanical work at the singular surface exerted at

the α component. Hence, we may assume that

~v+
2 ·T+

2 · ~n = ~v−3 ·T−
3 · ~n = 0 ,
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in accordance with the assumption that ice at the positive side and the bedrock-material
at the negative side of ice-bedrock interface are highly diluted. As a result, we have

0 = rb
2(ε2− ε1) + ~v−1 ·T−

1 ·~n +~v−2 ·T−
2 ·~n−~v+

3 ·T+
3 ·~n −~v+

1 ·T+
1 ·~n + [~q]+− ·~n . (5.74)

The special case of cold ice–bedrock interface follows the same procedure, but assuming
~v−1 ·T−

1 ·~n = 0 , and putting the surface mass production terms equal to zero, rb
1 = rb

2 = 0.
Since no melting or refreezing then occurs and the energy jump condition reduces to:

0 = ~v−2 ·T−
2 · ~n− ~v+

3 ·T+
3 · ~n − ~v+

1 ·T+
1 · ~n + [~q]+− · ~n . (5.75)

Entropy jump condition
From (3.72), we have

0 ≤
[

n∑

α=1

ραsα(~vα − ~ν) +
~q

T

]+

−
· ~n .

We assume that the total surface entropy production at the singular surface is zero (Hutter
[4]):

0 =

[
ρ1s1(~v1 − ~ν) + ρ2s2(~v2 − ~ν) + ρ3s3(~v3 − ~ν) +

~q

T

]+

−
· ~n . (5.76)

Since T is continuous, so are s1,s2, being functions of T only (see (4.179)). Thus it holds

0 = s1 [ρ1(~v1 − ~ν)]+− · ~n + s2 [ρ2(~v2 − ~ν)]+− · ~n + [s3ρ3(~v3 − ~ν)]+− · ~n +

[
~q

T

]+

−
· ~n ,

and finally using (5.51), (5.52), (5.56), (5.62) and (5.63), we find

0 = rb
2 T (s2 − s1) + [~q]+− · ~n . (5.77)

In the special case of the cold-ice–bedrock surface, we additionally assume rb
1 = rb

2 = 0,
since the ice temperature is lower than the melting temperature and, therefore, no melting
or refreezing occurs. We obtain:

0 = [~q]+− · ~n , (5.78)

that is, the normal component of heat flux is continuous across the cold-ice – bedrock
interface.

5.2.3 Cold-temperate ice transition surface (CTS)

The cold-temperate ice transition surface (CTS) is a surface between the cold (sign (+))
and temperate (sign (−)) region of an ice sheet. At the CTS, melting of ice and refreezing
of meltwater may occur. In view of the mixture theory approach, the CTS is described
as a singular surface in the water-ice mixture (α = 1, 2, respectively), at which the water
fraction tends to zero at the positive (cold) side:

ρ+
1 → 0 . (5.79)
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n

ν

Temperate ice (-)

Cold ice (+)

CTS
F (x,t) = 0
CTS:

Figure 5.3: Cold-temperate ice transition surface geometry.

The kinematic conditions for the CTS are of the same form as for the free surface.
Provided that the CTS is given by an implicit equation FCTS(~x, t) = 0 and the surface
velocity ~ν is defined, the evolution equation for the CTS is

∂FCTS

∂t
+ ~v+

2 · gradFCTS = (~v+
2 − ~ν) · ~n ‖gradFCTS‖ , (5.80)

where

~n(~x, t) =
gradFCTS(~x, t)

‖gradFCTS(~x, t)‖ , ~x ∈ CTS , (5.81)

and ~v+
2 is the material velocity of the ice component at the positive (temperate) side of

the CTS.
The dynamic conditions again follow from the general jump conditions in mixtures.

Mass jump conditions
The density jump conditions (3.28) and (3.32) read

[ρα(~vα − ~ν)]+− · ~n = rcts
α ,

n∑

α=1

rcts
α = 0 . (5.82)

For the 2-component ice-water mixture:

rcts
1 = −rcts

2 . (5.83)

The surface production terms rcts
1 ,rcts

2 , describe the mass exchange between the ice and
water component, i.e. melting of ice or refreezing of water at the CTS.

The ice component
The jump condition (5.82) for the ice component (α = 2) implies

[ρ2(~v2 − ~ν)]+− · ~n = rcts
2 . (5.84)

Introducing the ablation-accumulation function

a2
cts
⊥ = ρ+

2 (~v+
2 − ~ν) · ~n, (5.85)
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which represents the ice mass inflow (outflow) to the cold-ice zone, we arrive at

ρ−2 (~v−2 − ~ν) · ~n = a2
cts
⊥ − rcts

2 . (5.86)

In terms of the water content w, and the ice-water mixture density ρ:

(1− w−)(~v−2 − ~ν) · ~n =
a2

cts
⊥ − rcts

2

ρ
. (5.87)

The water component
The jump condition (5.82) for the water component (α = 1) reads

[ρ1(~v1 − ~ν)]+− · ~n = rcts
1 . (5.88)

We have
ρ+

1 (~v+
1 − ~ν) · ~n = 0 ,

since there is no meltwater in the cold-ice zone. By this and (5.83), we conclude that

ρ−1 (~v−1 − ~ν) · ~n = rcts
2 , (5.89)

or,
ρw−(~v−2 − ~ν) · ~n + ρw−~u−1 · ~n = rcts

2 ,

which, in view of (5.87) may be written as

w−a2
cts
⊥ − rcts

2

1− w− + ρw−~u−1 · ~n = rcts
2 ,

or,

ρw−~u−1 · ~n =
rcts
2 − w−a2

cts
⊥

1− w− . (5.90)

Linear momentum jump conditions
The linear momentum jump condition at the CTS follows from (3.39) and (3.43):

[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n = −~f cts
α ,

n∑

α=1

~f cts
α = ~0 . (5.91)

We again use only the linear momentum jump condition for the mixture as a whole:

n∑

α=1

[Tα − ρα~vα ⊗ (~vα − ~ν)]+− · ~n = ~0 . (5.92)

Neglecting the terms [ρα~vα⊗ (~vα−~ν)]+− ·~n, corresponding to the linear momentum jumps
across the CTS, which are considered to be small, we arrive at

[T1 + T2]
+
− · ~n = 0 . (5.93)
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According to (5.79), we assume:
T+

1 = 0 .

Hence, we obtain
T+

2 · ~n = (T−
1 + T−

2 ) · ~n . (5.94)

Energy jump condition
The temperature is considered to be continuous across the CTS:

[T ]+− = 0 . (5.95)

The general energy jump condition (3.64) for the mixture reads:

0 =
n∑

α=1

[
ρα(εα +

1

2
~v 2

α )(~vα − ~ν)− ~vα ·Tα + ~qα

]+

−
· ~n .

In our particular case n = 2:

0 =
[
ρ1

(
ε1 +

1

2
~v2

1

)
(~v1 − ~ν) + ρ2

(
ε2 +

1

2
~v2

2

)
(~v2 − ~ν)

− ~v1 ·T1 − ~v2 ·T2 + ~q
]+

−
· ~n.

We omit 1
2
(ρ1~v

2
1)
±, 1

2
(ρ2~v

2
2)
±, describing the jump in kinetic energies, since they are small.

Moreover ε1 and ε2 are continuous across the CTS, being functions of temperature only,
then

0 = ε1 [ρ1(~v1 − ~ν)]+− · ~n + ε2 [ρ2(~v2 − ~ν)]+− · ~n
− [~v1 ·T1 + ~v2 ·T2 + [~q]+− · ~n .

Using (5.83), (5.84) and (5.88):

0 = rcts
2 (ε2 − ε1) − [~v1 ·T1 + ~v2 ·T2]

+
− · ~n + [~q]+− · ~n . (5.96)

The terms ~v±α ·T±
α · ~n represent the mechanical work at the singular surface (from (+) or

(−) side) provided by the rest of the mixture and exerted at the α component. In view
of this interpretation we conclude that

~v+
1 ·T+

1 · ~n = 0 ,

in accordance with the assumption, that the water at the positive side is highly diluted.
As a result we have

0 = rcts
2 (ε2 − ε1) + ~v−1 ·T−

1 · ~n + ~v−2 ·T−
2 · ~n− ~v+

2 ·T+
2 · ~n + [~q]+− · ~n . (5.97)
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Entropy jump condition
The general entropy jump condition (3.72) reads:

0 ≤
[

n∑

α=1

ραsα(~vα − ~ν) +
~q

T

]+

−
· ~n .

As for the free surface or the ice-bedrock boundary, we assume the total surface entropy
production at the singular surface to be zero (Hutter [4]), thus:

0 =

[
ρ1s1(~v1 − ~ν) + ρ2s2(~v2 − ~ν) +

~q

T

]+

−
· ~n . (5.98)

Temperature T is continuous across the CTS, which implies continuity of s1 and s2, since
they are functions of T only (according to (4.179)). Then

0 = s1 [ρ1(~v1 − ~ν)]+− · ~n + s2 [ρ2(~v2 − ~ν)]+− · ~n +

[
~q

T

]+

−
· ~n ,

and finally using (5.83), (5.84) and (5.88), we find

0 = rcts
2 T (s2 − s1) + [~q]+− · ~n . (5.99)



Chapter 6

Numerical implementation: 2-D
stationary case

6.1 Introduction

In the previous chapter we finalized the theoretical description of an ice sheet. The
original aim of this chapter was the numerical implementation of the theory for an ice
slab of uniform thickness under stationary conditions and study of the differences in
physical behaviour in the present and the traditional formulation, outlined in the second
chapter. However numerical problems with connecting the two solutions, in the cold zone
with the solution in the temperate zone at the CTS, prevented us from reaching this goal.
The main difficulty is the fact that the CTS interface is a free surface, which position
must be determined too. If, in addition, the nonlinearity of the field equations and the
uncertainty of several material parameters and boundary conditions are considered, the
resulting problem is numerically ill-conditioned. We, therefore confined ourselves and
numerically solved the temperate-zone equations only. This limited solution, however,
demonstrates physical features and properties of the present formulation in comparison
with the traditional approach.

6.2 Temperate ice layer

We will consider a two-dimensional inclined temperate-ice layer of uniform thickness. The
following assumptions are made:

• Constant inclination angle γ of the slab, the uniformity in x-direction:

∂

∂x
(·) = 0 . (6.1)

• Steady-state configuration:

∂

∂t
(·) = 0 . (6.2)
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• Neglect of the pressure dependence of the melting point of ice,

TM ≡ 0◦C . (6.3)

• Parameter values:

ρ = 910 kg m−3, k = 2.1Wm−1K−1, cV = 2009J kg−1K−1, L = 335kJ kg−1,

gF = 9.81 m s−2.

z

x

Temperate ice

Lithosphere
γ

Figure 6.1: Inclined temperate-ice layer – the coordinate system.

In the coordinate system shown in Fig. 6.1, all field variables are functions of the
z-variable only.

The traditional formulation
Under the assumptions (6.1)-(6.3), the field equations for the temperate ice zone, listed
in Chapter 2 reduce to:
Mass balance for the mixture (see (2.16))

dvB
z

dz
= 0 . (6.4)

Linear momentum balance for the mixture
By omitting the inertia term ρ ˙~vB (Greve, [6]), (2.17) reads:

−dp

dz
+

d(
◦
T)zz

dz
− ρgF cos γ = 0 , (6.5)

d(
◦
T)xz

dz
+ ρgF sin γ = 0 . (6.6)

Mass balance for the water component (see (2.19))

ρ
dw

dz
vB

z = −djz

dz
+ M . (6.7)
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Stress-strain rate relation (see (2.21):
With the use of (6.4) and (6.1) we obtain

◦
(T)xx = 0 , (6.8)
◦

(T)zz = 0 , (6.9)

dvB
x

dz
= 2A(T, w)f(σ)

◦
(T)xz, (6.10)

the temperature TM is assumed equal to zero, see (6.3), and for the function f(σ) we
adopt the Glen’s flow law with n = 3:

f(σ) = σ2 . (6.11)

The σ variable was defined (see (2.26)) as

σ =

√
1

2
tr(

◦
T)2 , (6.12)

which now yields

σ2 =
◦

(T)
2

xz . (6.13)

The dependence of A(w) on w is restricted to a linear function (see Lliboutry&Duval [11])

A(w) = A(1 + αw) , (6.14)

with
A = 5.3 · 10−24s−1 Pa−3, α = 184 . (6.15)

Thus, the stress-strain rate relation (6.10) can be rewritten as

dvB
x

dz
= 2A(1 + αw)(

◦
(T)xz)

3. (6.16)

Constitutive equation for the diffusive water flux ~j (see (2.22)):

jz = −ν
dw

dz
, (6.17)

and constitutive relation for water mass-production term M (see (2.23)):

M = 2
A(w)f(σ)σ2

L

= 2
A(1 + αw)(

◦
T)4

xz

L
. (6.18)

The present formulation:
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We rewrite the field equations, listed at the beginning of Chapter 5;
Mass balance for the ice component (see (5.8)):

dw

dz
v2z − dv2z

dz
=

r1

ρ
. (6.19)

Mass balance for the water component (see (5.9)):

dw

dz
u1z +

dv2z

dz
+ w

du1z

dz
= 0 . (6.20)

Linear momentum balance for the water component (see (5.10)):

ν̃u1x = wρgF sin γ , (6.21)

ν̃u1z = −d(pw)

dz
− wρgF cos γ − ρω

dw

dz
. (6.22)

Note: we marked diffusivity ν by tilde to distinguish it from ν considered in the tradi-
tional formulation. In general, ν and ν̃ have different meaning

Linear momentum balance for the ice component

For numerical implementation, we consider
◦
T2 instead of

◦
D2 an independent variable in

the stress-strain rate relation. The linear momentum balance for the ice component (5.11)
is then written as

(
◦
T2)xz

dz
+ ρgF sin γ = 0 , (6.23)

−dp

dz
+

(
◦
T2)zz

dz
− ρgF cos γ = 0 . (6.24)

The stress – strain-rate relation adopted for numerical implementation is of the form
discussed in Chapter 4 (see (4.153)):

◦
D2 = A(w)f(σ)

◦
T2 , (6.25)

that is, inverse to the relation considered in theoretical investigations. We will also use
linear dependence of A(w) on w:

A(w) = A(1 + αw) , (6.26)

and apply Glen’s flow law:
f(σ) = σ2. (6.27)

For the purpose of modelling we need to specify the values of parameters A and α. Due
to the lack of reliable estimates, we decide to use the same values as in the traditional
relations. Consequently the stress – strain-rate relations coincide formally in both ap-
proaches, but whilst in the traditional formulation, the relation for the strain deviator is
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related to the barycentric velocity, in the present formulation the strain deviator is related
to the velocity of ice.

Since in 2-D case,

D2 =

(
0 1

2
dv2x

dz
1
2

dv2x

dz
dv2z

dz

)
, (6.28)

and1

◦
D2 = D2 − 1

2
tr(D2)1 , (6.29)

the relation (6.25) reads

1

2

(
−dv2z

dz
dv2x

dz
dv2x

dz
dv2z

dz

)
= A(w)f(σ)




◦
T2xx

◦
T2xz◦

T2xz

◦
T2zz


 . (6.30)

In view of (4.152), we have

2σ2 = tr(
◦
T2)

2

= (
◦
T2)

2
xx + (

◦
T2)

2
zz + 2(

◦
T2)

2
xz

= 2
(
(
◦
T2)

2
zz + (

◦
T2)

2
xz

)
. (6.31)

In addition, using the Glen’s flow law (6.27) and (6.26), eq. (6.30) implies:

dv2z

dz
= 2A(1 + αw)

(
(
◦
T2)

2
zz + (

◦
T2)

2
xz

)
(
◦
T2)zz , (6.32)

dv2x

dz
= 2A(1 + αw)

(
(
◦
T2)

2
zz + (

◦
T2)

2
xz

)
(
◦
T2)xz . (6.33)

Finally, the balance of energy (see (4.188)):

(L− p∆)r1 = −d(pwu1z)

dz
− p

v2z

dz
+ 2A(1 + αw)

(
(
◦
T2)

2
zz + (

◦
T2)

2
xz

)2

+λ
u1z

dz
+ wρgF (u1x sin γ − u1z cos γ) . (6.34)

Moreover, we will put λ = 0, since the physical interpretation of the term λdu1z

dz
is unclear.

1This definition of the deviator corresponds to the traceless part of a second-order tensor in two
dimensions. It is not clear, whether the flow law in the form (6.25) is still valid for the 2-D case (it is
valid in the 3-D case), but we adopt it here. The difference induced by the deviator definition in 2-D and
3-D case is, however, only connected with the numeral standing at the term trD2 in (6.29). This term is
equal to zero in the traditional formulation and assumed to be small in the present formulation.
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6.3 Solution

The equations from the preceding section were solved numerically by a program t ice.f90

written in Fortran 90 (see the attachment). We made use of the IMSL routine DDASPG
(see Press [15]), which provides the solution of a set of first-order ordinary differential
equations, expressed in the implicit form

~f(~y(z)′, ~y(z), z) = ~0 .

We were solving an initial-value problem, the ice-bedrock boundary as the initial point.
The temperate layer thickness was H = 200m.

The initial values are:

w(0) = 0 ,

p(0) = HρgF [Pa] ,
◦
T xz (0) = 0.07 ·HρgF [Pa] ,
◦
T zz (0) = 0 [Pa] ,

u1z(0) = 0 [ma−1] ,

v2x(0) = 5 [m a−1] ,

v2x(0) = −0.2 [m a−1] ,

jz(0) = 0 [kg m a−1] .

We introduce the parameters

a =
1

ν̃
, b =

ρω

ν̃
, c = ν , (6.35)

where the first two are diffusion parameters of the present formulation and c is the diffu-
sivity considered in the traditional model.

The physical dimensions are

[a] = kg−1 m−3 s, [b] = m s−1, [c] = kg m−2s−1 .

Figure 6.2 shows the case

a = 0, b = 0, c = 0.

We can see that both solutions coincide.

Figure 6.3 shows 4 different choices:

A1 : a = 10−11, b = 10−4, c = 0,

A2 : a = 10−10, b = 10−4, c = 0,

A3 : a = 10−9, b = 10−4, c = 0,

A4 : a = 10−8, b = 10−4, c = 0 .
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Figure 6.4 complementary shows:

B1 : a = 10−8, b = 10−5, c = 0,

B2 : a = 10−8, b = 10−4, c = 0,

B3 : a = 10−8, b = 10−3, c = 0,

B4 : a = 10−8, b = 10−2, c = 0 .

From Figures 6.3 and 6.4 we see that the two diffusivities a and b, introduced in the
present formulation significantly influence the water-content profiles w (the panels in the
third rows) and the longitudinal velocity profiles v2x (the panels in the second rows).
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Figure 6.2: The solutions of the initial-value problem in the temperate-ice zone for the traditional
approach ’stand’ and the present formulation ’new’ for the case a = b = c = 0, i.e. no water diffusion is
allowed in ice. We denoted

◦
T xz by ”sigma xz” and

◦
T zz by ”sigma zz”. Both solutions coincide.
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Figure 6.3: The solutions of the initial-value problem in the temperate-ice zone for the traditional
formulation without diffusion (c = 0) and the present formulation, with b = 10−4, A1: a = 10−11, A2:

a = 10−10, A3: a = 10−9, A4: a = 10−8, respectively. We denoted
◦
T xz by ”sigma xz” and

◦
T zz by

”sigma zz”.
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Figure 6.4: The solutions of the initial-value problem in the temperate-ice zone for the traditional
formulation without diffusion (c = 0) and the present formulation, with a = 10−8, B1: b = 10−5, B2:

b = 10−4, B3: b = 10−3, B4: b = 10−2, respectively. We denoted
◦
T xz by ”sigma xz” and

◦
T zz by

”sigma zz”.



Chapter 7

Summary

We were dealing with the formulation of a physical model of a polythermal ice sheet.
For the temperate-ice zone, we applied the mixture approach on the basis of the rational
thermodynamics of reacting mixtures. We derived the balance laws for reacting mixtures
containing discontinuity surface with including surface production terms at this surface.
We applied the general results of the mixture theory to a 2-component ice-water mixture
and set up the constitutive equations for this material model.

The model was further simplified by the means of rational thermodynamics, firstly by
inspecting the entropy principle, then by partial linearization of the material model with
respect to the equilibrium state.

According to the observed conditions in real glaciers, an incompressibility constraint
was introduced and the form of the reaction functionals was derived. The constitutive
model was then applied to the balance laws and the resulting field equations were reduced
to the form convenient for numerical implementation.

The polythermal ice-sheet model was completed by setting up the boundary conditions
at the free surface and at the ice-bedrock boundary, and by interface conditions at the cold-
temperate ice transition surface. The formulation of boundary and transition conditions
was unified on the basis of the mixture theory framework.

The field equations were solved numerically for a simple 2-D case of an inclined
temperate-ice layer of a uniform thickness under steady conditions and the role of the
diffusion parameters was studied. The computed water-content profiles differ significantly
for a certain range of the diffusion parameters. The stress – strain-rate relation is assumed
to be sensitive to the water content, which implies considerable variations in the velocity
profiles. There is a lack of knowledge about the real values of the diffusive parameters,
which makes difficult to quantify the difference between the fully-mixture formulation,
presented here, and the traditional formulation. Nevertheless, both formulations coincide
if the diffusion of water is neglected. To decide the importance of our present formulation
is a question of more experimental data on water diffusion in glaciers.
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