Thermomechanical processes in icy moons – insight from numerical modeling


Czech Science foundation project No. 19-10809S (years 2019-2021).

Abstract

The exploration of ocean worlds is driven by the question of emergence of life in places where liquid water has been present. Main attention is paid to Europa and Enceladus where a deep ocean is expected to be in a direct contact with the silicate interior. Larger moons Ganymede and Titan are predicted to possess a layer of high-pressure ice below the ocean that seems to prevent this contact. The aim of this project is to quantify some of the principal processes within these moons with a particular focus on (i) deformation, thermal evolution and material transport in ice crusts of Enceladus and Europa, (ii) transport of liquid water and non-ice material through the high-pressure ice layers of Ganymede and Titan, and (iii) thermal evolution of tidally heated silicate interiors of Europa and Enceladus. These goals will be achieved through the development of advanced computational tools and their application to the selected problems. Our results will improve the understanding of these ocean worlds and provide a framework for the interpretation of data collected by spacecraft missions.   logo

Goals

  • To develop a model of thermomechanical processes in the ice crusts of Enceladus and Europa
  • To quantify material transport through the high-pressure ice layers of Ganymede and Titan
  • To build a model of thermal evolution of the tidally heated silicate interiors of Europa and Enceladus

Accepted publications:

  1. Kervazo, M., Tobie, G., Choblet, G., Dumoulin, C., and Běhounková, M. (2021) Inferring Io’s interior from tidal monitoring, Icarus, https://doi.org/10.1016/j.icarus.2021.114737.
  2. Pleinerová Sládková, K., Souček, O., Běhounková, M. (2021) Enceladus’ Tiger Stripes as Frictional Faults: Effect on Stress and Heat Production, Geophys. Res. Lett., 48, e2021GL094849, https://doi.org/10.1029//2021GL094849.
  3. Kervazo, M., Tobie, G., Choblet, G., Dumoulin, C., and Běhounková, M. (2021) Solid tides in Io’s partially molten interior: contribution of bulk dissipation, A&A, https://doi.org/10.1051/0004-6361/202039433.
  4. Běhounková, M., Tobie, G., Choblet, G., Kervazo, M., Melwani Daswani, M., Dumoulin, C. and Vance, S.D. (2021) Tidally-induced magmatic Pulses on the oceanic floor of Jupiter’s moon Europa, Geophys. Res. Lett., 48, e2020GL090077, https://doi.org/10.1029/2020GL090077.
  5. Sotin, C., K. Kalousova, and G. Tobie (2021), Titan’s Interior Structure and Dynamics After the Cassini-Huygens Mission, Annu. Rev. Earth Planet. Sci., 49(1), 579-607, https://doi.org/10.1146/annurev-earth-072920-052847.
  6. Walterova, M. and Behounkova, M. (2020), Thermal and orbital evolution of low-mass exoplanets, The Astrophysical Journal, 900(1), No. 24, https://doi.org/10.3847/1538-4357/aba8a5.
  7. Sladkova, K., O. Soucek., K. Kalousova, and M. Behounkova (2020), Tidal walking on Europa’s strike-slip faults - insight from numerical modeling, J. Geophys. Res. Planets, 125(8), No. e2019JE006327, https://doi.org/10.1029/2019JE006327.
  8. Kalousova, K., and C. Sotin (2020), Dynamics of Titan’s high-pressure ice layer, Earth Planet. Sci. Lett., 545, 116416, https://doi.org/10.1016/j.epsl.2020.116416.
  9. Soderlund, K. M., K. Kalousova, J. J. Buffo, C. R. Glein, J. C. Goodman, G. Mitri, G. W. Patterson, F. Postberg, M. Rovira-Navarro, T. Ruckriemen, J. Saur, B. E. Schmidt, C. Sotin, T. Spohn, G. Tobie, T. Van Hoolst, S. D. Vance, and L. L. A. Vermeersen (2020), Ice-ocean exchange processes in the Jovian and Saturnian Satellites, Space Sci. Rev., 216(80), http://doi.org/10.1007/s11214-020-00706-6.
  10. Kalousova, K., and C. Sotin (2020), The insulating effect of methane clathrate crust on Titan’s thermal evolution, Geophys. Res. Lett., 47(13), e2020GL087481, https://doi.org/10.1029/2020GL087481.
  11. Journaux, B., K. Kalousova, C. Sotin, G. Tobie, S. Vance, J. Saur, O. Bollengier, L. Noack, T. Ruckriemen-Bez, T. Van Hoolst, K. M. Soderlund, and J. M. Brown (2020), Large ocean worlds with high-pressure ices, Space Sci. Rev., 216(7), https://doi.org/10.1007/s11214-019-0633-7.
  12. Čadek, O., O. Souček, and M. Běhounková (2019), Is Airy Isostasy Applicable to Icy Moons? Geophys. Res. Lett., 46(24), pages 14299-14306, https://doi.org/10.1029/2019GL085903.

Computational resources

  • The computations are carried out using IT4Innovations Centre (Large Infrastructures for Research, Experimental Development and Innovations project „IT4Innovations National Supercomputing Center – LM2015070, LM2018140, Czech Republic)
  • projects IDs: OPEN-14-33 and multiyear project OPEN-16-29.