Funkce více proměnných

Vázané extrémy

Nalezněte extrémy funkce vzhledem k vazbě:

1. \(xy; \quad x + y = 1 \)
2. \(\frac{x}{a} + \frac{y}{b}; \quad x^2 + y^2 = 1 \)
3. \(x^2 + y^2; \quad \frac{x}{a} + \frac{y}{b} = 1 \)
4. \(x^m y^n z^p; \quad x + y + z = a, \quad m, n, p, a > 0 \)
5. \(\sin x \sin y \sin z; \quad x + y + z = \frac{\pi}{2}, \quad x, y, z > 0 \)
6. \(\sum_{i=1}^{n} x_i^p, \quad \sum_{i=1}^{n} x_i = a, \quad p > 1, \quad a > 0 \)

Nalezněte největší a nejmenší hodnotu funkce na uvedené množině

7. \(x - 2y - 3; \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad 0 \leq x + y \leq 1 \)
8. \(x^2 - xy + y^2; \quad |x| + |y| \leq 1 \)
9. \(x^2 + y^2 - 12x + 16y; \quad x^2 + y^2 \leq 25 \)
10. \(x + y + z; \quad x^2 + y^2 \leq z \leq 1 \)
11. Při jakých rozměrech má kvádr daného objemu nejmenší povrch?
12. Do daného kužele vepište hranol o n-úhelníkové podstavě, který má maximální objem.
13. Najděte vzdálenost bodu \((p,q,r)\) od roviny \(ax + by + cz + d = 0\).
14. Najděte vzdálenost \(d \) dvou mímoběžek

\[
\begin{align*}
 x &= X_1 + at \quad x &= X_2 + ps \\
 y &= Y_1 + bt \quad y &= Y_2 + qs \\
 z &= Z_1 + ct \quad z &= Z_2 + rs.
\end{align*}
\]

15. Pomocí hledání vázaných extrémů dokážte

(a) AG nerovnost \(\frac{a_1 + \cdots + a_n}{n} \geq \sqrt[n]{a_1 \cdots a_n}, \quad a_i \geq 0 \)
(b) H"olderovu nerovnost \(\sum_{i=1}^{n} x_i y_i \leq \left(\sum_{i=1}^{n} x_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q \right)^{\frac{1}{q}} \), \(x_i, y_i \geq 0 \), \(p > 1, \frac{1}{p} + \frac{1}{q} = 1 \).