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S U M M A R Y
A new formulation is presented to describe both the wavefield and the static coseismic defor-
mation in depth-dependent elastic models generated by an a priori prescribed plane dislocation
seismic source of finite dimensions, which is represented by an arbitrary time-dependent slip
function changeable in both spatial dimensions along the fault. Elastic moduli can also change
with depth in the source depth range. By employing a special Cartesian decomposition of
displacement and continuity of traction acting on the fault, the partial differential equations
of motion are converted into a set of ordinary differential equations over the depth for the
displacement–stress vector, where the horizontal wavenumbers and the frequency play the
role of parameters and the slip function is transformed into the source term of the equations.
The resultant formulae thus represent a set of 1-D boundary-value problems, where no Green
functions are needed. The pre-stress terms are considered in the equations of motion to obtain
correct static limit.

Key words: 1-D elastic models, seismic source, Somigliana dislocation, waves and static
response.

1 M O T I VAT I O N

Most earthquakes are caused by an abrupt slip varying both in space and time (Somigliana dislocation) along faults. In continuum mechanics
such a seismic source can be modelled by prescribing a time-dependent discontinuity of the displacement vector and keeping simultaneously
continuity of the traction vector on the fault. To model co-seismic deformations, the static responses to final slips have to be evaluated.

In solid-state physics static problems of this kind had been studied already 100 years ago—see pp. 221–228 in Love (1944), who com-
mented on work by Volterra (1907) on the problem of static deformation of a hollow cylinder after removal of a thin slice and subsequent joining
of the plane faces so formed. Love added: “I have ventured to call them ‘dislocations’.” One of the first researchers, who realized the importance
of the theory of dislocations in geophysics, was Stekete. In his paper (Stekete 1958) he dealt with the slip function of the type of a rigid-body
displacement of finite dimensions in a homogeneous elastic half-space to obtain the tool for a quantitative description of fracture zones.

In simple models the static response to dislocations can be directly obtained by means of analytical formulae. In the effort to obtain
analytical formulae special attention has been paid to static deformation of homogeneous half-spaces (see, e.g., the review in Okada 1992).
The problem with such analytical formulae is that they may be oversimplified in particular applications because of the simplicity of the
medium and thus other methods for more complex elastic models are required. Employing the Thomson–Haskell matrix method, Singh (1970)
described the surface static response of an isotropic multilayered half-space to 3-D sources in the cylindrical system of vector functions and
Singh & Garg (1985) presented integral representation of the surface displacements caused by a line source and discussed possible extension
of their formulae to inner points as well as to models with a finite fault source. Their results were extended to the case of transversally
isotropic layered half-space by Pan (1989). The subsurface deformations were then studied in detail by Roth (1990). A 2-D discontinuity
method in multilayered media having irregular interfaces was presented by Dahm (1996). His approach is based on integral representation of
displacements on an interface, where either tractions or displacements at one side of the boundary may be prescribed, which can be applied,
for example, to problems where the stress drop is assumed to be known a priori.

In order to model generation of seismic waves, the dislocation boundary conditions on a fault are traditionally replaced by body-force
equivalents (e.g. Aki & Richards 1980; Dahlen & Tromp 1998). The response of an elastic medium to such a source is then given by means
of Green functions. In simple models the response can be again directly obtained by means of analytical formulae—see, e.g., Aki & Richards
(1980) for the well-known expression of the response of a homogeneous infinite medium to a point source or Rybicki (1986) for a review
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of Green function methods both in static and dynamic geophysical problems. However, analytical formulae obtained for the homogeneous
medium cannot usually be employed in more complicated models. This is the reason why in many cases, where a fully 3-D model of a studied
region is not required or known, the Green function formalism for finite seismic sources is employed, although only a depth dependence of
elastic moduli is taken into account. However, it is not necessary to use this formalism in such situations because the elastic equations of
motion can be reduced by transform techniques to a set of first-order differential equations. For example, Kennett & Kerry (1979) used a
Fourier–Bessel transform to describe seismic waves in a stratified elastic half-space. They considered a point source, which was determined
by the moment tensor, and represented it by means of a discontinuity of the displacement–stress vector in the matrix propagator technique.
The source of finite dimensions in this kind of model can be introduced into the propagator technique by decomposition of the wavefield into
the waves directly radiated from the source and into reverberated waves coming from other depths. Propagation of the reverberated waves can
be described by means of standard propagators and the directly radiated waves are obtained by solving the momentum equation in a uniform
layer containing the source (see the review by Spudich & Archuleta 1987).

The aim of this note is to express the elastic response of 1-D (depth-dependent) models to a general dislocation source of finite dimensions
with an arbitrary dip angle of the fault and arbitrary slip function without employing the body-force equivalent of such a source and thus
without dealing with Green functions. Instead, the Fourier transform over horizontal coordinates is employed. However, location of a fault
plane with finite dimensions inside the medium does not enable one to convert directly the horizontal part of the corresponding differential
operators into algebraic expressions. This is the reason why a special decomposition of displacement satisfying boundary conditions on the
fault is proposed. The application of the Fourier transform then results in a set of ordinary differential equations for the displacement–stress
vector over depth, where horizontal wavenumbers and frequency only play the role of parameters and the slip function is directly converted
into the source term of the equations. The obtained ordinary differential equations can then be solved by standard numerical methods, e.g. by
finite differences with pseudospectral accuracy on the Bessel grids (Fornberg 1996) between the interfaces with jumps of elastic parameters,
where the momentum equation is replaced by the requirement of continuity of the displacement vector and the traction vector, see also Hanyk
et al. (2002), where this approach was successfully used in numerical experiments describing a viscoelastic response to surface loading.

2 M E T H O D

2.1 Decomposition of displacement

We will represent the displacement u by means of the spectral decomposition

u(x, y, z, t) = 1√
(2π )3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V(kx , ky, ω; z)ei(kx x+ky y+ωt) dkx dky dω

+ e−[sgn(x+z cot δ)](x+z cot δ)/L 1

2π

∫ ∞

−∞

∫ ∞

−∞

[
C(ky, ω; z) + H (x + z cot δ)D(ky, ω; z)

]
ei(ky y+ωt) dky dω, (1)

where (see Fig. 1) x, y are the horizontal coordinates chosen in such a way that the y-axis lies in the fault plane; z is the depth; δ is the dip
angle; sgn is the signum function; x + z cot δ = 0 is the equation determining the fault plane; L is a characteristic length (e.g. the length of the
fault); H is the Heaviside function; D is the representation of the slip on the fault in the (ky, ω; z)-domain. In forward problems we suppose
that D is prescribed a priori and that D = 0 outside a rectangle 〈y1, y2〉 × 〈z1, z2〉, −∞ < y1 < y2 < ∞, 0 < z1 < z2 < ∞, after transforming
D(ky, ω; z) back into the (ω; y, z) domain. C is an auxiliary smooth function, which will be determined so that the traction acting at the fault
plane should be continuous. V is a smooth function, which will be determined so that the whole displacement should satisfy the momentum
equation and boundary conditions.

Let us consider in the (ky, ω; x , z)-domain the displacement

W(ky, ω; x, z) = e−[sgn(x+z cot δ)](x+z cot δ)/L
[
C(ky, ω; z) + H (x + z cot δ)D(ky, ω; z)

]
(2)

and introduce

sgn(s) = sgn(x + z cot δ) H (s) = H (x + z cot δ). (3)

Now we will study the stress induced by the displacement W in the subdomains outside the fault, i.e. for x + z cot δ 
= 0. In the (ky, ω;
x , z)-domain we can write

∇ · W = − sgn(s)

L
Wx + iky Wy − sgn(s)

L
cot δWz + e−sgn(s)(x+z cot δ)/L ∂

∂z
[Cz + H (s)Dz]. (4)

The corresponding stress tensor is

τxx (W) = λ(z)∇ · W − 2µ(z)
sgn(s)

L
Wx , (5)

τyy(W) = λ(z)∇ · W + 2µ(z)iky Wy, (6)

τzz(W) = λ(z)∇ · W + 2µ(z)

{
− sgn(s) cot δ

L
Wz + e−sgn(s)(x+z cot δ)/L ∂

∂z
[Cz + H (s)Dz]

}
, (7)
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Figure 1. Description of the model and the choice of the coordinates. The solid line in the depth interval 〈z1, z2〉 represents an active part of the fault
with non-zero slip, the dashed line shows the remaining inactive part of the fault plane. The active part of the fault is finite in the third y-dimension and
the slip is also y-dependent. The fault is inside the layer of thickness zb with depth-dependent Lamé coefficients and the layer lies on a homogeneous
half-space.

τxy(W) = µ(z)

[
iky Wx − sgn(s)

L
Wy

]
, (8)

τxz(W) = µ(z)

{
− sgn(s) cot δ

L
Wx + e−sgn(s)(x+z cot δ)/L ∂

∂z
[Cx + H (s)Dx ] − sgn(s)

L
Wz

}
, (9)

τyz(W) = µ(z)

{
− sgn(s) cot δ

L
Wy + e−sgn(s)(x+z cot δ)/L ∂

∂z
[Cy + H (s)Dy] + iky Wz

}
, (10)

where λ(z) and µ(z) are the depth-dependent Lamé coefficients. As the normal to the fault plane is n = (sin δ, 0, cos δ), we can express the
traction force vector T acting at the fault plane, where e−sgn(s)(x+zcotδ)/L → 1, in the form

Tx = λ sin δ

[
− sgn(s)

L
{Cx + H (s)Dx + cot δ[Cz + H (s)Dz]} + iky[Cy + H (s)Dy] + ∂

∂z
[Cz + H (s)Dz]

]

− 2µ sin δ
sgn(s)

L
[Cx + H (s)Dx ] + µ cos δ

[
− sgn(s)

L
{cot δ[Cx + H (s)Dx ] + Cz + H (s)Dz} + ∂

∂z
[Cx + H (s)Dx ]

]
, (11)

Ty = µ

[
sin δ

{
iky[Cx + H (s)Dx ] − sgn(s)

L
[Cy + H (s)Dy]

}

+ cos δ

{
− sgn(s)

L
cot δ[Cy + H (s)Dy] + ∂

∂z
[Cy + H (s)Dy] + iky[Cz + H (s)Dz]

}]
, (12)

Tz = λ cos δ

[
− sgn(s)

L
{Cx + H (s)Dx + cot δ[Cz + H (s)Dz]} + iky[Cy + H (s)Dy] + ∂

∂z
[Cz + H (s)Dz]

]

+ 2µ cos δ

{
∂

∂z
[Cz + H (s)Dz] − sgn(s)

L
cot δ[Cz + H (s)Dz]

}

+µ sin δ

[
∂

∂z
[Cx + H (s)Dx ] − sgn(s)

L
{cot δ[Cx + H (s)Dx ] + Cz + H (s)Dz}

]
. (13)
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Continuity of T across the fault plane, i.e. T(s > 0) − T(s < 0) = 0 for |s| → 0, then yields the equations determining C,

0 = λ sin δ

{
− 1

L
[2Cx + Dx + cot δ(2Cz + Dz)] + iky Dy + ∂

∂z
Dz

}
− 2µ

sin δ

L
(2Cx + Dx )

+ µ cos δ

{
− 1

L
[cot δ(2Cx + Dx ) + 2Cz + Dz] + ∂

∂z
Dx

}
, (14)

0 = sin δ

[
iky Dx − 1

L
(2Cy + Dy)

]
+ cos δ

[
− cot δ

L
(2Cy + Dy) + ∂

∂z
Dy + iky Dz

]
, (15)

0 = λ cos δ

{
− 1

L
[2Cx + Dx + cot δ(2Cz + Dz)] + iky Dy + ∂

∂z
Dz

}
+ 2µ cos δ

[
∂

∂z
Dz − cot δ

L
(2Cz + Dz)

]

+ µ sin δ

{
∂

∂z
Dx − 1

L
[cot δ(2Cx + Dx ) + 2Cz + Dz]

}
. (16)

The solution of this system is

Cy = L

2(sin δ + cos δ cot δ)

[
sin δ

(
iky Dx − Dy

L

)
+ cos δ

(
∂

∂z
Dy − cot δ

L
Dy + iky Dz

)]
, (17)

Cx = fx azz − fzaxz

axx azz − azx axz
, (18)

Cz = fzaxx − fx azx

axx azz − azx axz
, (19)

where

axx = (λ + 2µ) sin δ + µ cos δ cot δ, (20)

axz = (λ + µ) cos δ, (21)

azx = (λ + µ) cos δ, (22)

azz = (λ + 2µ) cos δ cot δ + µ sin δ, (23)

fx = L

2

{
λ sin δ

[
− 1

L
(Dx + cot δDz) + iky Dy + ∂

∂z
Dz

]
− 2

L
µ sin δDx + µ cos δ

[
− 1

L
(Dx cot δ + Dz) + ∂

∂z
Dx

]}
, (24)

fz = L

2

{
λ cos δ

[
− 1

L
(Dx + cot δDz) + iky Dy + ∂

∂z
Dz

]
+ 2µ cos δ

(
∂

∂z
Dz − cot δ

L
Dz

)
+ µ sin δ

[
− 1

L
(Dx cot δ + Dz) + ∂

∂z
Dx

]}
.

(25)

The vertical fault (δ = 90◦) represents the special simpler case, which yields

Cx = Lλ

2(λ + 2µ)

(
− 1

L
Dx + iky Dy + ∂

∂z
Dz

)
− µ

λ + 2µ
Dx , (26)

Cy = iky
L

2
Dx − 1

2
Dy, (27)

Cz = L

2

∂

∂z
Dx − 1

2
Dz . (28)

The simplest relation between C and D can be obtained for δ → 0◦:

C = −1

2
D. (29)

Now we will deal with the following six-component vector:

Y(W)(ky, ω; x, z) =




Wx

Wy

Wz

τxz(W)

τyz(W)

τzz(W)




=




(Cx + H (s)Dx )e−sgn(s)z cot δ/L

(Cy + H (s)Dy)e−sgn(s)z cot δ/L

(Cz + H (s)Dz)e
−sgn(s)z cot δ/L

τxz(W)e+sgn(s)x/L

τyz(W)e+sgn(s)x/L

τzz(W)e+sgn(s)x/L




e−sgn(s)x/L ≡ E(s)(ky, ω; z)e−sgn(s)x/L . (30)
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As we will write the momentum equations for V in the (kx, ky, ω; z)-domain, we introduce Y(W)(kx, ky, ω; z) by the relation

Y(W)(ky, ω; x, z) = 1√
2π

∫ ∞

−∞
Y(W)(kx , ky, ω; z)eikx x dkx (31)

and thus

Y(W)(kx , ky, ω; z) = 1√
2π

[
E(s>0)(ky, ω; z)

∫ ∞

−z cot δ
e−(ikx +1/L)x dx + E(s<0)(ky, ω; z)

∫ −z cot δ

−∞
e−(ikx −1/L)x dx

]

= 1√
2π

[
E(s>0)(ky, ω; z)

e(ikx +1/L)z cot δ

ikx + 1/L
+ E(s<0)(ky, ω; z)

e(ikx −1/L)z cot δ

−ikx + 1/L

]
. (32)

2.2 Governing equations in the (kx, ky, ω; z)-domain

In the (kx, ky, ω; z)-domain we can now easily express Hooke’s law for the whole displacement (V + W)(kx, ky, ω; z) as

∇ · (V + W) = ikx (Vx + Wx ) + iky(Vy + Wz) + ∂

∂z
(Vz + Wz) (33)

and the corresponding stress tensor is

τxx (V + W) = λ(z)∇ · (V + W) + 2µ(z)ikx (Vx + Wx ), (34)

τyy(V + W) = λ(z)∇ · (V + W) + 2µ(z)iky(Vy + Wy), (35)

τzz(V + W) = λ(z)∇ · (V + W) + 2µ(z)
∂

∂z
(Vz + Wz), (36)

τxy(V + W) = µ(z)[iky(Vx + Wx ) + ikx (Vy + Wy)], (37)

τxz(V + W) = µ(z)

[
∂

∂z
(Vx + Wx ) + ikx (Vz + Wz)

]
, (38)

τyz(V + W) = µ(z)

[
∂

∂z
(Vy + Wy) + iky(Vz + Wz)

]
. (39)

In the following formulae we will use the notation Y ≡ Y(V) + Y(W). Hooke’s law as expressed above yields

∂Y1

∂z
+ ikx Y3 − 1

µ
Y4 = 0, (40)

∂Y2

∂z
+ ikyY3 − 1

µ
Y5 = 0, (41)

∂Y3

∂z
+ ikxλ

λ + 2µ
Y1 + ikyλ

λ + 2µ
Y2 − 1

λ + 2µ
Y6 = 0. (42)

In order to obtain the correct formulae in the ω → 0 limit (coseismic deformation), we will consider the momentum equation including
also the pre-stress terms:

∇ · τ (u) +
(

ρ0
dg0

dz
uz − ρ0g0∇ · u

)
ez = ρ0

∂2u

∂t2
, (43)

where ρ0 ≡ ρ0(z) is the density before deformation, g0 ≡ g0(z) is the corresponding gravity acceleration and ez is the vertical unit vector
pointing downward. In the (kx, ky, ω; z)-domain this equation can be rewritten as the three scalar equations,

λ

(
−k2

x Y1 − kx kyY2 + ikx
∂Y3

∂z

)
− 2µk2

x Y1 − µ
(
k2

yY1 + kx kyY2

) + ∂Y4

∂z
+ ρ0ω

2Y1 = 0, (44)

λ

(
−kx kyY1 − k2

yY2 + iky
∂Y3

∂z

)
− 2µk2

yY2 − µ
(
kx kyY1 + k2

x Y2

) + ∂Y5

∂z
+ ρ0ω

2Y2 = 0, (45)

ikx Y4 + ikyY5 + ∂Y6

∂z
+ ρ0

dg0

dz
Y3 − ρ0g0

(
ikx Y1 + ikyY2 + ∂Y3

∂z

)
+ ρ0ω

2Y3 = 0. (46)

Now we will substitute ∂Y 3/∂z and rearrange this system as follows:

∂Y4

∂z
+

[
−(λ + 2µ)k2

x − µk2
y + λ2

λ + 2µ
k2

x + ρ0ω
2

]
Y1 +

[
−(λ + µ) + λ2

λ + 2µ

]
kx kyY2 + ikxλ

λ + 2µ
Y6 = 0, (47)

∂Y5

∂z
+

[
−(λ + µ) + λ2

λ + 2µ

]
kx kyY1 +

[
−(λ + 2µ)k2

y − µk2
x + λ2

λ + 2µ
k2

y + ρ0ω
2

]
Y2 + ikyλ

λ + 2µ
Y6 = 0, (48)
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∂Y6

∂z
− ρ0g0

2µ

λ + 2µ
(ikx Y1 + ikyY2) +

(
ρ0

dg0

dz
+ ρ0ω

2

)
Y3 + ikx Y4 + ikyY5 − ρ0g0

λ + 2µ
Y6 = 0. (49)

We have thus arrived at the final system of equations:

∂

∂z
Y(V) + AY(V) = − ∂

∂z
Y(W) − AY(W), (50)

where the matrix A is

A =




0 0 ikx − 1

µ
0 0

0 0 iky 0 − 1

µ
0

ikxλ

λ + 2µ

ikyλ

λ + 2µ
0 0 0 − 1

λ + 2µ

−4µ
λ + µ

λ + 2µ
k2

x − µk2
y + ρ0ω

2

[
−(λ + µ) + λ2

λ + 2µ

]
kx ky 0 0 0

ikxλ

λ + 2µ[
−(λ + µ) + λ2

λ + 2µ

]
kx ky −4µ

λ + µ

λ + 2µ
k2

y − µk2
x + ρ0ω

2 0 0 0
ikyλ

λ + 2µ

−ρ0g0
2µ

λ + 2µ
ikx −ρ0g0

2µ

λ + 2µ
iky ρ0

dg0

dz
+ ρ0ω

2 ikx iky − ρ0g0

λ + 2µ




. (51)

2.3 Decomposition into toroidal and spheroidal parts

If we introduce the toroidal part of the displacement and the traction,

YT = (ikx Y2 − ikyY1, ikx Y5 − ikyY4), (52)

as well as their spheroidal part,

YS = (ikx Y1 + ikyY2, ikY3, ikx Y4 + ikyY5, ikY6), k ≡
√

k2
x + k2

y, (53)

the final system of equations from the previous section can be replaced by the decoupled system

∂

∂z
YT (V) + AT Y(V) = − ∂

∂z
YT (W) − AT Y(W), (54)

∂

∂z
YS(V) + ASY(V) = − ∂

∂z
YS(W) − ASY(W), (55)

where the matrices AT and AS are

AT =

 0 − 1

µ

−µk2 + ρ0ω
2 0


, (56)

AS =




0 ik − 1

µ
0

ik
λ

λ + 2µ
0 0 − 1

λ + 2µ

−4k2µ
λ + µ

λ + 2µ
+ ρ0ω

2 0 0 ik
λ

λ + 2µ

−ikρ0g0
2µ

λ + 2µ
ρ0

dg0

dz
+ ρ0ω

2 ik − ρ0g0

λ + 2µ




, (57)

2.4 Boundary conditions

If there is a free surface at z = 0, the corresponding boundary conditions are

Y4(V + W) = Y5(V + W) = Y6(V + W) = 0. (58)

Moreover, we will consider a homogeneous half-space for z > zb > 0, i.e. λ and µ are positive constants for z > zb. We will also neglect the
influence of pre-stress in this half-space, which can be done formally by setting g0 = 0 in AS , and no source will be placed here, i.e. W(z) =
0 for z > zb. Now we will express the solution of the momentum equations in the half-space analytically following the matrix representation,
which can be found in Aki & Richards (1980).
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The eigenvalues of AT are ∓√
k2 − β−2ω2, where β = √

µ/ρ0 is the velocity of S waves, and the corresponding eigenvectors form the
columns of the matrix

ET =
(

1 1
µ

√
k2 − β−2ω2 −µ

√
k2 − β−2ω2

)
. (59)

The solution can thus be written in the form

YT = ET LT IT , (60)

where

LT (z) =

e

√
k2−β−2ω2(z−zb) 0

0 e−
√

k2−β−2ω2(z−zb)


. (61)

and IT is the vector of integration constants. If k2 ≤ β−2ω2, the solution describes upgoing and downgoing SH waves; if k2 > β−2ω2, we
obtain diverging and converging Love waves. As the source is located at shallower depth, no upgoing SH wave can be generated. Similarly,
we will consider only Love waves with zero amplitude at infinity. These requirements can be simply satisfied by putting

IT 1 = 0. (62)

Since

L−1
T (z)E−1

T =

e−

√
k2−β−2ω2(z−zb) 0

0 e
√

k2−β−2ω2(z−zb)







1

2

1

2µ
√

k2 − β−2ω2

1

2
− 1

2µ
√

k2 − β−2ω2


 (63)

and

IT = L−1
T (zb)E−1

T YT = E−1
T YT , (64)

the condition I T 1 = 0 then yields the boundary condition at z = zb:

1

2
YT 1 + 1

2µ
√

k2 − β−2ω2
YT 2 = 0. (65)

Analogously, the eigenvalues of AS are ∓√
k2 − α−2ω2, ∓√

k2 − β−2ω2, where α = √
(λ + 2µ)/ρ0 is the velocity of P waves, and the

vector YS describes the P–SV waves and/or the Rayleigh waves. The corresponding matrices ES and LS are

ES =




αk

ω

αk

ω
−i

β
√

k2 − β−2ω2

ω
−i

β
√

k2 − β−2ω2

ω

−i
α
√

k2 − α−2ω2

ω
i
α
√

k2 − α−2ω2

ω
−βk

ω

βk

ω

2
ρ0αβ2k

√
k2 − α−2ω2

ω
−2

ρ0αβ2k
√

k2 − α−2ω2

ω
iωρ0β

(
1 − 2β2 k2

ω2

)
−iωρ0β

(
1 − 2β2 k2

ω2

)

iωρ0α

(
1 − 2β2 k2

ω2

)
iωρ0α

(
1 − 2β2 k2

ω2

)
−2

ρ0β
3k

√
k2 − β−2ω2

ω
−2

ρ0β
3k

√
k2 − β−2ω2

ω




, (66)

LS(z) =




e
√

k2−α−2ω2(z−zb) 0 0 0

0 e−
√

k2−α−2ω2(z−zb) 0 0

0 0 e
√

k2−β−2ω2(z−zb) 0

0 0 0 e−
√

k2−β−2ω2(z−zb)


. (67)

Therefore, the boundary conditions for these waves are

IS 1 = IS 3 = 0. (68)

Since

E−1
S =




β2k

αω

1 − 2β2(k2/ω2)

2α
√

k2 − α−2ω2
iω

k

2ωρ0α
√

k2 − α−2ω2

−i

2ωρ0α

β2k

αω
− 1 − 2β2(k2/ω2)

2α
√

k2 − α−2ω2
iω − k

2ωρ0α
√

k2 − α−2ω2

−i

2ωρ0α

1 − 2β2(k2/ω2)

2β
√

k2 − β−2ω2
iω −βk

ω

−i

2ωρ0β
− k

2ωρ0β
√

k2 − β−2ω2

1 − 2β2(k2/ω2)

2β
√

k2 − β−2ω2
iω

βk

ω

i

2ωρ0β
− k

2ωρ0β
√

k2 − β−2ω2




, (69)
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we finally obtain the boundary conditions at z = zb in the form

β2k

αω
YS 1 + 1 − 2β2(k2/ω2)

2α
√

k2 − α−2ω2
iωYS 2 + k

2ωρ0α
√

k2 − α−2ω2
YS 3 − i

2ωρ0α
YS 4 = 0, (70)

1 − 2β2(k2/ω2)

2β
√

k2 − β−2ω2
iωYS 1 − βk

ω
YS 2 + −i

2ωρ0β
YS 3 − k

2ωρ0β
√

k2 − β−2ω2
YS 4 = 0. (71)

2.5 Static response

We will obtain the static response by performing ω → 0 limit in the formulae presented above. There is no problem with toroidal deformation.
The matrix AT has the form

AT =

 0 − 1

µ

−µk2 0


, (72)

and the corresponding boundary condition at z = zb is

µkYT 1 + YT 2 = 0. (73)

Spheroidal deformation is more complicated. The matrix AS is easily obtained again by setting ω = 0,

AS =




0 ik − 1

µ
0

ik
λ

λ + 2µ
0 0 − 1

λ + 2µ

−4k2µ
λ + µ

λ + 2µ
0 0 ik

λ

λ + 2µ

−ikρ0g0
2µ

λ + 2µ
ρ0

dg0

dz
ik − ρ0g0

λ + 2µ




. (74)

The boundary conditions (70) and (71), however, become linearly dependent for ω → 0. The reason is that there are only two eigenvalues of
AS in the homogeneous half-space, ∓k, and only two linearly independent eigenvectors

F∓ =




1

∓i

±2µk

−i2µk


. (75)

Nevertheless, there are two generalized eigenvectors

G∓ =




± λ + 2µ

k(λ + µ)
+ i

k

±1k + i
µ

k(λ + µ)

2µ ± i2µ

2µ




(76)

satisfying the equation

AS G∓ = ∓kG∓ − F∓. (77)

Then the four independent solutions in the half-space are

F∓e±k(z−zb), [G∓ + zF∓]e±k(z−zb). (78)

The non-diverging solution in the half-space can thus be written in the form

YS = I1 F+e−k(z−zb) + I2(G+ + zF+)e−k(z−zb), (79)

where I 1 and I 2 are integration constants. At z = zb, eq. (79) represents the four boundary equations for the six unknowns: the four components
of the solution vector YS and the two integration constants I 1 and I 2. We can express the integration constants, e.g. from the first and the
second equation of (79) to obtain

I1 = YS 1 + −λ − 2µ + k(λ + µ)zb + i(λ + µ)

λ + 3µ
(YS 1 + iYS 2), I2 = − k(λ + µ)

λ + 3µ
(YS 1 + iYS 2). (80)

After putting these expressions of the integration constants into eq. (79) the third and the fourth equations of eq. (79) are then the required
boundary conditions. The degeneracy of the static limit in the matrix method applied to layered models was analysed by Zhu & Rivera
(2002).
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3 C O N C L U D I N G R E M A R K

The studied problem has been converted to the systems of ordinary differential equations over depth for the vector of unknowns consisting
of the displacement components and the horizontal traction components with the boundary conditions both at the surface and at the top of
the homogeneous layer below the zone of interest. No Green functions were used as we worked directly with the slip function determining
Somigliana dislocation.

The horizontal wavenumbers as well as the frequency play the role of parameters in each system and thus in horizontal dimensions the
problem can be discretized by means of the discrete wavenumber method, which is simply explained in Bouchon (2003); see also the original
papers by Bouchon & Aki (1977) and Bouchon (1979). Such a discretization was shown to be an effective tool in computations of the stress
field radiated by the six elements of the moment tensor in plane-layered media (Cotton & Coutant 1997).

Vertical discretization can be performed, e.g. by finite differences with pseudospectral accuracy (Fornberg 1996; Hanyk et al. 2002).
From the numerical point of view, this approach is more straightforward than the discretization by means of a system of homogeneous layers
and subsequent employment of the matrix method, which yields rather complicated formulae both in wavefield (Kennett 2001) and static
(Roth 1990) calculations. As the fault is of finite dimensions and the Lamé coefficients can vary with depth also along the fault, the presented
approach enables, in principle, to deal with situations, where the fault penetrates a material interface, which can result in unexpected effects
(Bonafede et al. 2002; Rivalta et al. 2002).

A C K N O W L E D G M E N T S
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