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Solving PDEs with PGI CUDA Fortran 
Part 1: Introduction to NVIDIA hardware and CUDA architecture 
 
Outline 
Multiprocessors and compute capability. Floating-point arithmetic, Gflops. CUDA programming model: threads, blocks 
and grids, warps and kernels. Memory hierarchy. Compute-capability limits. memory coalescing. A kernel source code. 
 
Accelerators 
coprocessors for offloading compute-intensive processes 
GPUs (graphics processing units) – coprocessors specialized to accelerate graphics 
  but evolved recently to serve for general-purpose (GP) GPU computing 
 – massively parallel: collect many (hundreds) processors (cores) 
 – appropriate algorithms may get speedups of 10x-100x, but redesign of applications is necessary 
NVIDIA  
CUDA  – the most popular GP GPU parallel programming model today 
 – from notebooks and personal desktops to high performance computing (HPC) 
 – a host (CPU) offloads a suitable part of a process (a kernel) to the device (GPU) 
 – the device with many cores runs the kernel concurrently by many subprocesses (threads) 
 – two-level hardware parallelism on a device:  
  SIMD (single-instruction multiple-data) and MIMD (multiple-instruction multiple-data) 
 – a programming model reflects the hardware parallelism by grouping the threads into blocks and grids 
nvcc and CUDA API (Application Programming Interface) 
 – C/C++ based proprietary compiler and library provided by NVIDIA 
 – many third-party tools on top of nvcc... 
Portland Group Inc. (PGI): a Fortran compiler with CUDA extensions 
 – a high-level programming model that interoperates with highly-tuned low-level kernels: CUDA Fortran 
 – directive-based programming: PGI Accelerator (a software model for coding hardware accelerators) 
 – access to optimized GPU libraries 
 
NVIDIA GPU generations and compute capability 
G80 (since 2006): compute capability 1.0, 1.1 
 features (1.1): 8 cores/multiprocessor, single-precision (SP) real arithmetic 
 models: GeForce 9800, Quadro FX 5600, Tesla C870, D870, S870 
GT200 (since 2008): compute capability 1.2, 1.3 
 features (1.3): double-precision (DP) 
 models: GeForce GTX 295, Quadro FX 5800, Tesla C1060, S1070 
Fermi/GF100/GT300 (since 2010): compute capability 2.0, 2.1 
 features (2.0): 32 cores/multiprocessor, faster DP, hardware cache 
 models: GeForce GTX 580, Quadro 6000, Tesla C2050, S2070 
Product families: GeForce for games and PC graphics, Quadro for professional graphics, Tesla for HPC 
 
A first view of NVIDIA hardware – Fermi (CC 2.0) 
a device: a) 1–16 streaming multiprocessors (SMs) 
  b) device memory of about GB size, L2 cache of 768 KB 
a multiprocessor: a) 32 thread processors (CUDA cores) for integer and SP/DP real, 4 SP special function units (SFUs) 
  b) registers: 128 KB, L1 cache + shared memory: 64 KB, constant cache: 8 KB, texture cache: 6–8 KB 
  c) 2 instruction (warp) schedulers 
one device: up to 16 SMs, i.e., 16 x 32 = 512 CUDA cores 
one graphics card: up to 2 devices 
one motherboard: up to 2 graphics cards 
a rack solution: 4 devices per module 
 
Comparison with multicore-CPU terminology 
NVIDIA terms  parallel-computing terms 
a device    ~  a multicore processor with each core able to run independent to another 
   (MIMD parallelism) 
a multiprocessor  ~ a (vector) core with the ability to switch among several (vector) instruction streams  
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   (interleaved multithreading) 
CUDA cores    ~ scalar units executing concurrently a vector instruction stream  
   (SIMD parallelism) 
see Wolfe (2010) about Intel Knights Ferry versus Fermi 
 
Other compute capabilities 
CC 1.3 
a multiprocessor: 8 CUDA cores for integer and SP real, 1 DP real unit, 2 SP SFUs, 1 instruction scheduler 
64 KB registers/SM, 16 KB smem/SM, 8 KB cmem cache/SM, 6–8 KB texture cache 
according to NVIDIA documentation no L1 & L2 cache, but there is some (e.g., Volkov 2008) 
devices with up to 30 SMs, i.e., 30 x 8 = 240 CUDA cores/device 
CC 2.1 
a multiprocessor: 48 CUDA cores, 4 DP instructions per clock cycle, 8 SP SFUs, 2 instruction schedulers 
on-chip memory and L2 cache same as CC 2.0 
 
Gflops by NVIDIA GPUs and Intel CPUs 
Giga=10^9, flops = flop/s = floating-point operations/s 
(theoretical) Gflops = processor_clock_in_MHz * CUDA_cores * operations_per_clock / 1000 
operations_per_clock = 2 (FMA) on CC 1.x, 2 (FMA) on CC 2.x, possibly 3 (FMA+SF) on Tesla, 4 on Intel Nehalem 
                
Top CC 2.0 products (June 2011) 
CC name   CUDA cores     dmem SP Gflops DP Gflops power 
2.0 Tesla S2050    4 x 14 x 32 = 1792   12  GB 4122  2061  900 W 
2.0 Tesla M2090        16 x 32 = 512     6  GB 1331    665  ? W 
2.0 Tesla C2070        14 x 32 = 448     6  GB 1030    515  247 W 
2.0 GeForce GTX 590  2 x 16 x 32 = 1024     3  GB 2488  1244  365 W 
2.0 GeForce GTX 580       16 x 32 = 512     1.5 GB 1581    790  244 W 
Top CC 1.3 products 
1.3 Tesla S1070  4 x 30 x   8 =   960    16  GB 2765    346  700 W 
1.3 Tesla C1060        30 x  8 =   240      4  GB   622      78  188 W 
1.3 GeForce GTX 295 2 x 30 x   8 =   480     1.8 GB 1788    224  289 W  
GPUs and CPUs for ~ USD 300 
2.0 GeForce GTX 470      14 x  32 =   448   1.3 GB 1089  1/2 of SP 215 W 
1.3 GeForce GTX 260      27 x    8 =   216   0.9 GB   912 (715) 1/8 of SP 182+ W 
Intel Core i7 950 (Nehalem Bloomfield)        4 cores      49  1/2 of SP 130 W 
This notebook 
2.1 GeForce GT 425M        2 x  48 =     96   1.0 GB   215  1/12 of SP   
Intel Core i7 740QM (Nehalem mobile)        4 cores      28  1/2 of SP   45 W  
 
Throughput of native arithmetic instructions per multiprocessor (operations per clock cycle per multiprocessor) 
 integer + integer *,FMA SP +,*,FMA DP +,*,FMA SP SF (frcp, log2f, exp2f, sinf, cosf) 
1.x 8  multiple  8  1  2 
2.0 32  16  32  16  4 
2.1 48  16  48  4 (slow!) 8 
FMA = fused multiply-add, fma(x,y,z)=x*y+z, SF = special function 
SP = (4B) single-precision real, DP = (8B) double-precision real 
(NVIDIA CUDA C Programming Guide, Chap. 5) 
 
Gflops/W 
GeForce CC 2.0  4-7 Gflops/W 
GeForce CC 1.3  3-6 Gflops/W 
Intel i7 950  0.4 Gflops/W 
 
CUDA software architecture 
CUDA (Compute Unified Device Architecture): a general purpose parallel computing architecture 
 hardware: multiprocessor, cores, memory 
 software: a programming model 
  C/C++ compiler nvcc 
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  CUDA API (Application Programming Interface) library 
more CUDA tools by NVIDIA: 
 CUDA Toolkit with nvcc, CUDA debugger, Visual Profiler 
 GPU-accelerated numerical libraries: CUBLAS, CUSPARSE, CUFFT, CURAND 
 Computing SDK (Software Development Kit) code samples 
more languages by third parties: 
 OpenCL (Khronos), Brook (Stanford University) – based on C language 
 Microsoft DirectCompute – a part of DirectX 
 PGI compiler suite (Portland Group) – PGI CUDA Fortran, PGI CUDA C/C++, PGI Accelerator 
 Jacket (AccelerEyes) – platform for Matlab 
 and many others 
 
CUDA programming model 
in hardware: a device with multiprocessors (MIMD parallelism)  
  a multiprocessor with CUDA cores (SIMD parallelism) 
in software: a grid of blocks 
  a block of threads 
– blocks correspond to multiprocessors, a grid to a device 
– a thread is executed by a CUDA core 
– all threads of a block are executed by CUDA cores of a single multiprocessor 
– threads of different blocks can be executed by different multiprocessors, each independent of another ("MIMD") 
 
More about grids and blocks 
– grids and blocks are effectivelly 1D, 2D or 3D indexed arrays of threads 
– blocks are limited in size (~1024 threads), to fit well into 32 cores of a multiprocessor 
– a grid size is effectivelly unlimited (~ 2^48 ~ 10^14 blocks) 
– an optimal block size should be chosen carefully in order to reach a high multiprocessor occupancy 
 (i.e., a number of threads resident in a multiprocessor) 
– a grid size is chosen to meet a problem size with a given block size, block size * grid size = problem size 
– a device with more multiprocessors can process a large grid faster 
 
Moreover, there are warps:  
– groups (vectors) of 32 consecutive threads of a block that are executed in parallel in hardware  
 ("SIMD", in CUDA rather SIMT: single-instruction multiple-threads) 
– warps in a block are executed concurrently, but one at a time ("interleaved multithreading"),  
 they are switched by warp schedulers 
– threads in a warp are free to branch and execute independently, but a performance of a warp  
 would be reduced (divergent warps) 
– threads in a warp can benefit from access patterns to device memory that can be merged into one transaction  
 (memory coalescing), e.g., addressing consecutive elements of a properly aligned array 
 
Kernel  
– a procedure launched from the host and executed on the device 
– a source code is written as for a single thread and executed by all threads 
– the kernel executes asynchronously, i.e., the host process continues concurrently 
– the host and the device are synchronized implicitly at the point of host-device memory transfer, 
 or explicitly by a synchronization routine 
– some devices are capable of execution concurrent with memory transfers 
– the total number of threads, i.e., grid and block sizes, is set dynamically at the time of kernel launch 
 
GPU memory hierarchy – Fermi (CC 2.0) 
On device... 
– device memory (dmem) used for – global memory: public data, shared by threads  
         – local memory (lmem): private data, local in threads, did not fit into registers 
         – constant memory: data initialized by the host, read-only in the device 
         – texture memory: data initialized by the host, read-only in the device 
– L2 cache for faster access to device memory, shared by all multiprocessors 
On each multiprocessor („on-chip“)... 
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– registers: local data, also used internally by the compiler 
– L1 cache: for faster access to device memory, shared by all CUDA cores in a multiprocessor 
– shared memory (smem), shared by all CUDA cores in a multiprocessor („software-managed cache”) 
– available configurations: 16 KB L1 cache + 48 KB smem or 48 KB L1 cache + 16 KB smem 
– 8 KB constant cache: for faster reading from 64 KB constant memory (cmem) residing in dmem 
– 6–8 KB texture cache: for faster reading from texture memory residing in dmem, optimized for 2D arrays 
About the latency (Volkov 2008)...   and the memory bandwidth... 
– registers: no (read) latency    – transfers in dmem: from tens to above 100 GB/s 
– smem (i.e., L1 cache): units or tens of clock cycles – host-dmem transfers: 6 GB/s (PCI Express 2.0) or less 
– dmem: hundreds of clock cycles   
On the host side... 
– host memory can be allocated as pinned (page-locked):  
 pinned host-dmem transfers are faster by tens of % up to two times 
 the page-locked memory may not be available 
 
CUDA compute capability limits 
(NVIDIA CUDA C Programming Guide, App. F, also CUDA_Occupancy_Calculator.xls) 
Grid and block related limits 
1.x max block dimensions: 512-512-64, but total size: 512 threads/block 
 max grid dimensions: 65535-65535-1 (max 2D grids) 
2.x max block dimensions: 1024-1024-64, but total size: 1024 threads/block 
 max grid dimensions: 65535-65535-65535 (3D grids) 
1.0,1.1 max 24 resident warps/SM, i.e., max   768 threads/SM 
1.2,1.3 max 32 resident warps/SM, i.e., max 1024 threads/SM 
2.0,2.1 max 48 resident warps/SM, i.e., max 1536 threads/SM 
all max 8 resident blocks/SM 
 warp size: 32 threads/warp 
Memory related limits 
  registers lmem  smem  cmem  cmem cache texture cache 
1.0,1.1  32 KB/SM 16 KB/thread 16 KB/SM 64 KB/device 8 KB/SM 6-8 KB/2 SMs 
1.2,1.3  64 KB/SM 16 KB/thread 16 KB/SM 64 KB/device 8 KB/SM 6-8 KB/3 SMs 
2.0,2.1  128 KB/SM 512 KB/thread 16-48 KB/SM 64 KB/device 8 KB/SM 6-8 KB/SM 
 
CUDA on GeForce 
a GeForce GPU is usually attached to a display and serves the graphical user interface of an operating system 
the GUI is stalled during a kernel run, the display is updated between the kernel runs 
there is a runtime limit for a single kernel on a GPU with a display attached: 
 Linux:      ~  8 s 
 Microsoft Windows XP:   ~  5 s 
 Microsoft Windows Vista, Windows 7: ~  2 s 
after that, the process calling the kernel is cancelled or the OS crash occurs 
Linux: a window manager can be stopped (Ubuntu: service gdm stop), the system can then be accessed remotely  
 and there is no timeout 
Windows Vista and Windows 7 can disable or extend the limit by via registry editing or merging registry entries  
 by the .reg scripts: 
 to disable Timeout Detection and Recovery (TDR)... 
Windows Registry Editor Version 5.00 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\GraphicsDrivers] 
"TdrLevel"=dword:00000000 

 to extend the 2-s limit to 60 s... 
Windows Registry Editor Version 5.00 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\GraphicsDrivers] 
"TdrDelay"=dword:00000060 

see CUDA_Toolkit_Release_Notes.txt or http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx  
 (Timeout Detection and Recovery of GPUs through WDDM)



http://geo.mff.cuni.cz/~lh 
 

Finally, a first example: addition of a 1D array and a scalar, a(:)=a(:)+z 
 
a CPU version       a GPU version 
pgfortran -fast t1c.f90      pgfortran -fast -Mcuda t1g.f90 
 
MODULE mConst 
 
INTEGER,PARAMETER :: DP=4,NMAX=4096*256 
 
END MODULE 
 
MODULE mProc 
USE mConst 
IMPLICIT NONE 
 
CONTAINS 
 
SUBROUTINE Assign(a,z) 
REAL(DP) :: a(:) 
REAL(DP) :: z 
INTEGER  :: j 
do j=1,size(a) 
  a(j)=a(j)+z 
enddo 
END SUBROUTINE 
 
END MODULE 
 
PROGRAM Template_1_CPU 
USE mConst 
USE mProc 
IMPLICIT NONE 
REAL(DP) :: a(NMAX),z 
 
 
a=0. 
z=1. 
call Assign(a,z) 
 
print *,a(1),a(NMAX),sum(a) 
 
END PROGRAM 
 

MODULE mConst 
USE cudafor 
INTEGER,PARAMETER :: DP=4,NG=4096,NB=256,NMAX=NG*NB 
TYPE(dim3),PARAMETER :: grid=dim3(NG,1,1),block=dim3(NB,1,1) 
END MODULE 
 
MODULE mProc 
USE mConst 
IMPLICIT NONE 
 
CONTAINS 
 
ATTRIBUTES(GLOBAL) SUBROUTINE Assign(a,z) 
REAL(DP) :: a(:)   ! DEVICE attribute by default 
REAL(DP),VALUE :: z 
INTEGER  :: j 
  j=threadidx%x+NB*(blockidx%x-1) 
  a(j)=a(j)+z 
 
END SUBROUTINE 
 
END MODULE 
 
PROGRAM Template_1_GPU 
USE mConst 
USE mProc 
IMPLICIT NONE 
REAL(DP) :: a(NMAX),z 
REAL(DP),DEVICE :: ad(NMAX) 
 
ad=0. 
z=1. 
call Assign<<<grid,block>>>(ad,z) 
a=ad 
print *,a(1),a(NMAX),sum(a) 
 
END PROGRAM 
 

Differences between CPU and GPU versions: 
– initialization: cudafor module, grid and block shape and size 
– a kernel: global attribute, attributes of arguments, outer loops replaced by thread indexing 
– a kernel call: allocation of device data, host-device data transfers, executable configuration 
 
Examples in CUDA Fortran SDK folder 
bandwidthTest 
goal: speed of CPU-GPU and GPU-GPU data transfers 
 
Links and references 
NVIDIA hardware 
 http://www.nvidia.com/tesla   etc. 
 http://en.wikipedia.org/wiki/Nvidia_Tesla  etc. 
NVIDIA GPU Computing Documentation 
 NVIDIA CUDA C Programming Guide (esp., Chap. 4 & 5 & App. A & F) 
 http://developer.nvidia.com/nvidia-gpu-computing-documentation  
PGI resources 
 Articles, PGInsider newsletters, White papers and specifications, Technical papers and presentations 
 http://www.pgroup.com/resources/articles.htm 
Volkov V., Demmel J. W., Benchmarking GPUs to tune dense linear algebra, 2008 
 http://www.cs.berkeley.edu/~volkov/ 
Wolfe M., Compilers and More: Knights Ferry versus Fermi, 2010 
 http://www.hpcwire.com/hpcwire/2010-08-05/compilers_and_more_knights_ferry_versus_fermi.html 
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Solving PDEs with PGI CUDA Fortran 
Part 2: Introduction to PGI CUDA Fortran 
 
Outline 
Why Fortran, why CUDA Fortran. Compilers for NVIDIA GPUs. Hierarchy of CUDA Fortran, CUDA C and CUDA Runtime 
API. Kernel and device subroutines. GPU memory specification and allocation. Host-device data transfers. Launching 
kernels. Porting source codes: to-do list. Compiler switches. Source-code examples. 
 
Why Fortran 
– a well-established programming language for scientific and engineering applications 
– supports high performance computing and parallelization (OpenMP, MPI, ...) 
– ready-to-link optimized numerical libraries (LAPACK, NAG, IMSL, ...) 
– hides some technicalities ("pointers and asterisks are not for everybody") 
– standardized interoperability with C 
– and of course, http://www.pbm.com/~lindahl/real.programmers.html 
 
Why PGI CUDA Fortran and PGI Accelerator 
– CUDA Fortran: a small set of extensions to Fortran that supports and is built upon the CUDA computing architecture 
– PGI Accelerator: directives similar to OpenMP style to define accelerated regions and corresponding data 
– a Fortran programmer can keep living in the Fortran world: 
 device data can be declared and allocated by Fortran specification and allocation statements 
 host-device data transfer can be done by Fortran assignment statements (including array syntax) 
 kernels can be written and launched using extended Fortran syntax 
– CUDA Fortran is higher-level programming model relative to CUDA C 
– PGI Accelerator is higher-level programming model relative to CUDA Fortran 
 
Compilers for NVIDIA GPUs 
nvcc: a free C/C++ proprietary compiler by NVIDIA, included in the CUDA Toolkit 
 a command-line tool on top of a standard C/C++ compiler  
 provides calls to (higher-level) CUDA Runtime API and (lower-level) CUDA Driver API 
 June 2011: release version 4.0; previous versions 3.2, 3.1, 2.3 
PGI Workstation: a commercial compiler suite by PGI (the Portland Group) 
 Fortran 95/2003 and C/C++ compilers 
 for Linux, Windows, MacOS, 32 and 64 bits, with OpenMP and MPI support 
 the command-line interface, for Windows: the Microsoft Visual Studio Express environment 
 GPU support: CUDA Fortran, CUDA C/C++, PGI Accelerator directives 
 selected parts of CUDA Toolkit in the suite: nvopencc, CUDA Runtime API, CUBLAS, CUFFT 
 June 2011: release version 11.6 with CUDA Toolkits 3.2 and 4.0 
a working set: NVIDIA graphics driver (with support of CUDA Toolkit used by PGI) 
 PGI Workstation or PGI Server (Linux, Windows, MacOS) or PGI Visual Fortran (Windows) 
 optional: NVIDIA CUDA Toolkit (requires gcc on Linux, MS Visual C++ Express on Windows) 
 
CUDA Fortran mission 
writing kernel subroutines and device procedures 
 ATTRIBUTES(KERNEL) SUBROUTINE MyKernel(arguments) 
declaring and allocating data in the device or on-chip memory 
 INTEGER,ALLOCATABLE,DEVICE :: ad(:) ! dmem 
 REAL :: b                           ! registers or lmem 
 REAL,CONSTANT :: pi                 ! cmem 
 COMPLEX,SHARED :: c(nmax)           ! smem 
transferring data between host and device 
 ad=a ; ... ; a=ad  
launching kernels 
 call MyKernel<<<gridsize,blocksize>>>(arguments) 
calling CUDA Runtime API routines 
 istatus=cudaThreadSynchronize() 
accessing definitions of CUDA types and interfaces 
 use cudafor 
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Kernel subroutine and device procedures 
Kernel subroutine 
– launched by the host for execution on GPU 
– specified by ATTRIBUTES(GLOBAL) 
– written for a single thread, executed by each thread (the total number of threads is assigned by the kernel call) 
– typically updates an array passed as an argument, often one array element by one thread 
Supported datatypes 
– INTEGER(1,2,4,8), REAL(4,8), COMPLEX(4,8), LOGICAL(1,2,4,8), CHARACTER(1) and derived types 
Supported statements 
– assignment statements, including the array language 
– conditional statements and constructs IF and SELECT CASE 
– loops DO with index variable, DO WHILE and unbounded DO, along with CYCLE and EXIT statements  
– statements CONTINUE, GOTO, CALL and RETURN 
Supported Fortran and CUDA intrinsics 
Fortran: abs, aimag, aint, …, min, max, …, acos, asin, atan, …, all, any, count, maxloc, maxval, sum, … 
CUDA: fma_rn, fma_rz, fma_ru, fma_rd, fmaf_rn, ...  (many others) 
Constraints 
– cannot contain STOP and PAUSE 
– cannot contain input/output commands (PRINT *,scalar possible since ver. 11.6) 
– cannot contain ALLOCATABLE or POINTER data 
– cannot be RECURSIVE, PURE or ELEMENTAL 
– cannot contain procedures, cannot be contained in a procedure (can appear in a module) 
Arguments 
– arrays must be ready in device memory already, scalars can be in host memory 
– actual arguments in device memory are passed by reference (arrays always, scalar optionally) 
 and are shared by all threads – they are in global memory (residing in device memory), 
 corresponding dummy arguments have the DEVICE attribute by default 
– actual arguments in host memory (scalars only) are passed by value  
 and are private to each thread – they are in registers or in local memory (residing in device memory), 
 corresponding dummies must have the VALUE attribute 
Device procedures 
– subroutines and functions that can be called from a kernel or another device procedure (not from a host procedure) 
– specified by ATTRIBUTES(DEVICE) 
Thread indexing 
– a unique thread index that can (must) be found from built-in variables...  
 a) threadidx for the index of a thread in a block (1 is the lowest) 
 b) blockidx  for the index of a block in a grid (also one-based) 
 c) blockdim  for the size and shape of a block 
 d) griddim  for the size and shape of a grid 
– the variables are structures of type dim3: type dim3 ; integer x,y,z ; end type 
 i.e., they allow for 1D (via x component), 2D (x,y) and 3D (x,y,z) block and grid shapes 
Correspondence between array indexes and thread and block indexes can be done in many ways, 
 but the threadidx%x should always correspond to consecutive array elements (for memory coalescing) 
– 1D array, 1D block, 1D grid: i=threadidx%x+blockdim%x*(blockidx%x-1) 
– 1D array, 2D block, 1D grid: i=threadidx%x+blockdim%x*((threadidx%y-1)+blockdim%y*(blockidx%x-1)) 
– 2D array, 1D block, 1D grid: i=threadidx%x, j=blockidx%x  etc. 
– Fortran-matrices have the column-major order ("1st index is changing fastest"), 
 i.e., threadidx%x should correspond to the array index for the first dimension 
Synchronization 
– threads running in parallel occasionally need synchronization at a certain point (a barrier) 
– a barrier for all threads of a block is a call to a CUDA routine:  call syncthreads() and variants 
– a barrier for all threads of a grid is the end of the kernel:  end subroutine 
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GPU memory specification and allocation 
Device memory (dmem) 
– resides on the device, accessible by both the host and the device 
– bandwidth to the host side slower (via PCI Express slot, ~< 6 GB/s), to multiprocessors faster (~< 100 GB/s) 
– used primarily for global memory (public data shared by all threads),  
 also for local memory (private data local in each thread if registers are exhausted and spilled),  
 also for constant memory (read-only public data, cached on multiprocessors), 
 also for texture memory (similar, but not accessible by CUDA Fortran) 
– provides a two-way bridge between the host and the device: 
 a host procedure declares, allocates and (optionally) initializes data in dmem, 
 the dmem variables are passed as kernel arguments by reference, 
 if updated in the kernel, the host procedure can copy the dmem data back to host memory 
– variables in dmem are declared with the DEVICE attribute: 
 if in a host procedure, the variable can appear only in allocations and deallocations, in assignment  
  statements (as the source and/or the destination) and as an actual or dummy argument 
 if in a kernel as a dummy argument, the variable is public and shared by all threads 
  (the DEVICE attribute of dummy arguments is implicit for actual arguments from dmem) 
 if in a kernel as a local variable, the variable is private in each thread 
– device arrays in a host procedure can be both static and allocatable, local arrays in kernels can be static only 
– if threads of a warp access dmem arrays by consecutive elements, they will all be served simultaneously 
 because of the device memory coalescing  
– the ordering of multidimensional arrays in linear memory must be taken into account: 
 the column-major order used by Fortran (as opposite to C) implies that the thread index threadidx%x  
 should be used as the array index for the first dimension 
– fully fledged dmem coalescing also requires correct alignment of accessed array elements but failing to do so 
 will result in two memory accesses at worst 
Registers and local memory (lmem) 
– registers reside in fast on-chip memory, lmem in slower device memory, but it can be stored in L1 or L2 cache 
– registers readable with no latency, dmem latency is hundreds of clock cycles, cache latency in-between 
– used for private data local in each thread, not accessible by the host 
– variables in registers and lmem can appear in kernels and device procedures, not in host procedures 
– variables in registers and lmem are declared without any CUDA attribute 
– kernel dummy arguments with the VALUE attribute are stored into registers or lmem 
Constant memory (cmem) 
– resides in device memory (64 KB) and can be cached on each multiprocessor (8 KB) 
– must be initialized in a host procedure and is read-only in a kernel and device procedures 
– variables in cmem are declared with the CONSTANT attribute which is illegal in host procedures, thus,  
 cmem data should be declared in a module with a kernel and made visible to a host procedure 
– cmem broadcasting: when more threads of a warp read the same word from cmem cache, they will all  
 be served simultaneously 
Shared memory (smem) 
– resides in fast on-chip memory of 16 KB (CC 1.x/2.x) or 48 KB (CC 2.x) on each multiprocessor 
– used for data shared by all threads in a block (but not among different blocks) 
– variables in smem are declared with the SHARED attribute in a kernel or a device procedure 
 and must be initialized by threads 
– the amount of smem required by a block poses a limit on a number of resident blocks in a multiprocessor, 
 e.g., real(8) shared array of 1024 elements occupies 8 KB and, with 48 KB smem per multiprocessor,  
 max. 6 blocks can be resident on a multiprocessor (but 8 blocks is the upper limit anyway) 
– smem allows fast access as is (an order of magnitude faster than uncached access to dmem) 
– moreover, when threads of a warp access consecutive 4B words in smem, they will all be served simultaneously 
 because of the ability of smem to access smem banks simultaneously  
 (consecutive words are assigned to consecutive smem banks) 
– smem broadcasting: when more threads of a warp read the same word from smem, they will all be served
 simultaneously  
– a smem bank conflict occurs when two or more threads of a warp access a different word in the same smem bank 
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Host-device data transfer 
– simple assignment statements in host procedures 
– statements provided for: host-to-device transfer,  ad=a 
    device-to-host transfer,  a=ad 
    device-to-device transfer, bd=ad 
– for arrays, one contiguous block transfer shoud be preferred 
– similarly, host-to-constant-memory transfer can be issued 
– on systems with integrated host and device memory, the mapped page-locked memory should be used, 
 data transfer would then be superfluous 
– CUDA memory management routines are also provided  
 
Launching kernels 
– a kernel call statement is expected to set the number of threads that will execute the kernel by assigning  
 the execution configuration, i.e., actual grid and block sizes 
– grid and block sizes are either scalar integers or dim3 structures, 
 grid=dim3(1024,1024,1), block=256 
– extended form of the CALL statement: 
 CALL Kernel<<<grid,size>>>(arguments) 
– the chevrons can optionally specify amount of dynamically assigned shared memory (a scalar integer bytes)  
 and the stream identification (0 or a scalar integer returned by the cudaStreamCreate function) 
 <<<grid,size,bytes,stream>>> 
– grid and block sizes have to satisfy compute-capability limits, dynamically assigned smem must be available 
 
Porting source codes from CPU Fortran to CUDA Fortran: To-do list 
1. extract parallelizable portions of the code (most often with one or more loops) 
 into subroutines contained in a module 
2. edit the kernel:  
 set the global attribute 
 set the value attributes of kernel arguments passed by value 
 substitute outer loops with thread indexing 
3. edit the host procedure:  
 attach the cudafor module 
 set grid and block shape and sizes 
 allocate device memory data 
 transfer data from host memory to device memory 
 set the execution configuration by chevrons 
 pass kernel arguments:  
  arrays in device memory by reference 
  scalars in host memory by value 
 transfer data from device memory back to host memory 
 
Compiler switches 
pgfortran -help [option]  or pgf77, pgf90, pgf95 
pgfortran -V   version information 
pgfortran file.f90  no optimization 
pgfortran -fast file.f90  common local optimization set, see pgfortran -help -fast 
pgfortran -fastsse file.f90 more local optimizations on 32bit systems (equivalent to -fast on 64bit systems) 
pgfortran -fast -Mipa=fast file.f90  global optimization 
pgfortran -g file.f90  debugging information 
pgfortran -Mcuda file.f90 enable CUDA Fortran 
Mcuda suboptions: -Mcuda=cc11,cc13,cc20,3.1,3.2,4.0,emu,keepgpu,ptxinfo etc. 
 cc11, cc13, cc20  specific compute capability (default: all; cc21 not yet available) 
 3.1, 3.2, 4.0   specific CUDA Toolkit compatibility (default in ver. 11.6: 3.2, in 11.5: 3.1) 
 emu    emulation mode 
 keepgpu   keeping kernel CUDA C source files 
 ptxinfo    messages from ptxas about register and lmem/smem/cmem usage 
    (ptxas = PTX-language assembler; PTX = Parallel Thread Execution) 



http://geo.mff.cuni.cz/~lh 
 

pgaccelinfo utility 
CUDA Fortran source coudes can have .cuf extension, then the -Mcuda option is default 
 
CUDA Fortran source-code examples 
Example 1 (template): addition of 1D array and a scalar 
a(:)=a(:)+z 
goals: setting the execution configuration – the grid and block sizes 
 passing arguments to a kernel – arrays by reference, scalars by value 
 correspondence of 1D arrays and thread indexing 
Example 2: addition of 2D arrays by a device function 
a(:,:)=a(:,:)+b(:,:) 
goals: correspondence of 2D arrays and thread indexing 
 device procedures 
Example 3: accessing 2D arrays in nested loops 
a(:,:)=a(:,:)+b(:,:) once again 
goals: efficient access to 2D arrays with column-major order on CPU and GPU 
 device memory coalescing 
Example 4: avoiding divergent warps 
each thread summing the harmonic series  
goals: execution time for various grid and block sizes 
 execution time for various amounts of diverging execution paths in a warp 
Example 5: using shared memory (the 3-point moving average filter) 
the moving average = a finite-impulse response filter that creates a series of averages of the original data set 

 
goals: transfer of device memory data to shared memory 
 synchronization of threads in a block 
and... 
 
A final example: Mandelbrot set 
wiki: a set of points, whose boundary generates a two-dimensional fractal shape 
a set M of complex numbers c for which the  of the sequence  remains bounded 
c is not in M, if  for any n 
a source-code snippet: 
 complex cc,z ; 
 z=0.; do n=1,nmax ; z=z*z+cc ; if (abs(z)>2.) record_cc_and_exit ; enddo 
note: abs(z)>2. may be rather slow, real(z)**2+imag(z)**2>4. is expected to evaluate faster 
vizualization of Mandelbrot-set approximations: 
 for each c, the highest n, if any, for which abs(z_n)<=2, is recorded 
 all c corresponding to a fixed n form a set M_n, the n-th approximation of M 
 all M_n are vizualized, each with a different color 
 

Links and references 
PGI resources 
 CUDA Fortran Programming Guide and References, Release 2011 
 PGI Compiler User’s Guide, Release 2011 (chapter Using an Accelerator) 
 PGI Compiler Reference Manual, Release 2011 (chapter PGI Accelerator Compilers Reference) 
 Articles, PGInsider newsletters, White papers and specifications, Technical papers and presentations 
 http://www.pgroup.com/resources/articles.htm 
NVIDIA GPU Computing Documentation 
 NVIDIA CUDA C Programming Guide (esp., Chap. 5: Performance guidelines) 
 NVIDIA CUDA C Best Practices Guide 
 NVIDIA Tuning CUDA applications for Fermi 
 http://developer.nvidia.com/nvidia-gpu-computing-documentation  
Source-code examples 
 CUDA Fortran SDK: C:\Program Files\PGI\win64\2011\cuda\CUDA Fortran SDK 
Wolfe M., CUDA Fortran: The next level, PGInsider, 2010 
 http://www.pgroup.com/lit/articles/insider/v2n3a1.htm 
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Solving PDEs with PGI CUDA Fortran 
Part 3: Linear algebra. Laplace's equation 
 
Outline 
Compute- and memory-bound kernels. Matrix multiplication. Optimized libraries for linear algebra. Direct and iterative 
methods for linear algebraic equations. Laplace's and Poisson's equations in 1D. Direct solution and Jacobi and Gauss-
Seidel iterations. 
 
Compute-bound and memory(-bandwidth)-bound kernels  
Definitions 
number of floating-point operations F [flop]   for SP (single) or DP (double precision) 
floating-point operations per second dF [flop/s]  
 
number of transferred bytes or words B [byte] or W [word] W=B/4 for SP, W=B/8 for DP 
memory bandwidth per second  dB [bytes/s] or dW [words/s]  
 
float:byte ratio    F/B or dF/dB [flop/bytes] 
float:word ratio    F/W  or dF/dW [flop/word] 
 relation    F/W  = 4 F/B 
 
Theoretical hardware limits  dF SP [Gflop/s]  dB [GB/s]  dF/dB [flop/byte] 
Tesla C2070    1030   144   7.2 
GeForce GTX 470   1089   134   8.1 
GeForce GTX 260   715   112   6.4 
GeForce GT 425M   215   25.6   8.4 
 
Theoretical limits in basic linear-algebra algorithms 
     F  W   F/W  F/B 
dot-product of vectors of n elements 2n  2n+n = 3n  2/3  2.7 
matrix-vector product   n . 2n  n2+n+n2 ~ 2n2  1  4 
matrix-matrix product   n2 . 2n  2n2+n2 = 3n2  2n/3  2.7 n 
i.e., only the matrix multiplication provides the flop:byte ratio large enough for GPUs 
and therefore can be compute-bound, while BLAS 1+2 algorithms are memory-bound 
 
Matrix multiplication 
see PGI CUDA Fortran User Guide, chapter Examples for the source code 
see Volkov's paper for a story of developing matmul on GPUs 
 
Optimized libraries for linear algebra 
BLAS library (Basic Linear Algebra Subroutines) 
for summs, scaling, dot products, matrix multiplication etc. 
Levels 1 (vector-vector), 2 (matrix-vector), 3 (matrix-matrix) 
in single precision (prefix s), double precision (d), complex SP (c), complex DP (z) 
e.g.,  L1: saxpy  alpha*x(1:n)+y(1:n) 
 L3: dgemm alpha*A(1:m,1:k)*B(1:k,1:n)+beta*C(1:,1:n) 
a port for GPUs by NVIDIA: the CUBLAS library 
 
LAPACK library (Linear Algebra PACKage) 
for solving linear algebraic equations by direct methods, also for eigenvalue problems 
includes – BLAS Levels 1, 2, 3 
 – direct solvers of linear algebraic systems with general, band-diagonal matrices,  
  symmetric positively definite matrices etc. 
 – algorithms: LU, QR and Cholesky factorization, singular value decomposition (SVD) etc. 
 – dense, banded and other matrices 
a port available in commercial optimized general-purpose libraries: MKL, IMSL, NAG 
variants for sparse matrices and for parallel computing 
for GPUs: packages CULA tools (for fee), MAGMA (for free) 



http://geo.mff.cuni.cz/~lh 
 

 
Running pgfortran with CUBLAS 
CUBLAS – a part of CUDA Toolkit, i.e. recent versions: 3.1, 3.2, 4.0 
packed in the directory tree of PGI 
works with dmem arrays, can be linked with gfortran/g95/ifort (examples in App. B of CUBLAS User Guide), 
 but with PGI it’s simple (examples in CUDA Fortran SDK in PGI tree and now) 
example with GEMM: TestCUBLAS.f90 
 goals: interoperability of Fortran and C, Fortran interface to overloaded subroutines, random numbers 
 
Running pgfortran with CULA tools 
CULA tools – Basic version free for SP, Premium version with DP and more routines 
 – recent versions R11 (for CUDA 3.2), R12 (for CUDA 4.0) 
 – Fortran-relevant interfaces: Fortran for host-mem arrays, Device for dmem arrays 
performance graphs 
examples with GEMM: TestCULA.f90 
 goals: interface to CULA functions, CULA initialization, inquiries and shutdown 
 
Direct and iterative methods for linear algebraic equations 
Linear algebraic systems 
    
 
Direct methods 
 solve for a unique solution (if it exists) in ~ n3 operations (for dense matrices) 
 i.e., for n=103: number of operations ~ 109, for n=104: ~ 1012 operations, etc. 
 no additional information necessary 
LU factorization for general (dense) matrices 
 a) decomposition A = L . U , where L is a lower triangular matrix, U an upper triangular matrix 
 b) solving to algebraic equations L . y = b for vector y 
 c) solving to algebraic equations U . x = y for vector x 
 variants for band diagonal (banded) matrices available 
Cholesky decomposition for symmetric positive definite matrices 
 possible to decompose into the form A = L . LT 
 
Iterative methods 
 solve for approximate solutions iteratively 
    
 i.e., an initial approximation  must be provided 
  and matrix-vector multiplication is performed in each iteration 
 the only way when the matrix A is large 
 typical requirements for success:  
  the iteration matrix is sparse 
  the iterations converge rather fast 
  e.g., for ~ n operations for matrix-vector multiplications and ~ n or ~ const number of iterations,
   the total number of operations may be linear (~ n) or quadratic (~ n2) function of n 
 methods: Jacobi, Gauss-Seidel, successive overrelaxation (SOR), conjugate gradient method (CGM),  
  multigrid method (MG) etc. 
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Laplace's and Poisson's equations in 1D 
Equation and boundary conditions 
the second-order differential equation for a real function u(x) of one real variable x  

    

the right-hand side 
 Laplace:  
 Poisson:  
boundary conditions 
 Dirichlet:  
 Neumann:  (not simultaneously at both ends) 
i.e., the boundary value problem (BVP) for the elliptic differential equation 
Features of the solution to the Laplace's equation (i.e., harmonic functions) 
 the maximum principle: extremes of u(x) always at the boundary 
 the mean value theorem: integral over a ball is proportional to the value in the center of the ball 

  in 1D:  

Analytical solutions 
Laplace's equation:     
Poisson's equation with constant f(x) = a:  
Poisson's equation with arbitrary f(x):   
where b and c can be obtained from the two boundary conditions 
 
Discretization 
the equidistant grid     
 
 
 
the centered 2nd-order finite-difference scheme for the 2nd derivative (FD2) 
    

the left- and right-hand 1st-order finite-difference schemes for the 1st derivative, needed for the Neumann conditions 
    

 
Discretized system of linear algebraic equations 
– for the Dirichlet boundary conditions at both ends 
  
    
 
i.e., the matrix of the system takes the tridiagonal (moreover, symmetric and positive definite) form 

    

– for the Neumann boundary condition at one or the other end, the first or the last equation is different 
  
   or     
 
Direct solution 
Linear algebraic equations with tridiagonal matrix (see Numerical Recipes chapter 2.3) 
 a) a loop to eliminate of subdiagonal elements 
 b) a loop to eliminate superdiagonal elements ("backsubstitution") 
Example of direct solution to 1D Laplace's and Poisson's equations  
– based on the serial routine tridag (Numerical Recipes Chapter 2.4)  
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Iterative solution 
Decomposition  A = L + D + U  with L lower triangular, D diagonal and U upper triangular matrix 
Then,   (L + D + U ) . x = b  
can be rewritten into the form suitable for iterations, 
   x = D–1 (b – (L + U) . x) 
or, for each row, 

    

Jacobi iterations  
the iteration index n is appended to both L . x and U . x terms 
     

    

 
Gauss-Seidel iterations 
the iteration index n is appended to U . x term only, the n+1 goes to L . x 
    

    

Features: 
– updates in Jacobi iterations have to be stored into new memory positions and can therefore be performed  
 in parallel 
– Gauss-Seidel iterations update the existing memory positions and are supposed to be performed  
 serially 
– Gauss-Seidel is proved to be slightly more accurate for some matrices 
 
Examples of Jacobi and Gauss-Seidel-like iterations for 1D Laplace's equation 
 
Links and references 
Libraries 
CUBLAS Library User Guide 
 http://developer.nvidia.com/nvidia-gpu-computing-documentation  
CULA Programmers Guide and Reference Manual 
 http://www.culatools.com/features/performance  
MAGMA, Matrix Algebra on GPU and Multicore Architectures 
 http://icl.cs.utk.edu/magma/ 
Calling CUBLAS from CUDA Fortran, 2010 
 http://cudamusing.blogspot.com/ 
Humphrey J., Spagnoli K., Using the CULA GPU-enabled LAPACK Library with CUDA Fortran, PGInsider, 2010 
 http://www.pgroup.com/lit/articles/insider/v2n3a5.htm 
Tomov S. et al., Using MAGMA with PGI Fortan, PGInsider, 2010 
 http://www.pgroup.com/lit/articles/insider/v2n4a4.htm 
Toepfer C., Using GPU-enabled Math Libraries with PGI Fortran, PGInsider, 2011 
 http://www.pgroup.com/lit/articles/insider/v3n1a5.htm 
Matrix multiplication 
Volkov V., Demmel J. W., Benchmarking GPUs to Tune Dense Linear Algebra, 2008 
 http://www.cs.berkeley.edu/~volkov/ 
Volkov V., Demmel J. W., LU, QR and Cholesky factorizations using vector capabilities of GPUs, 2008 
Nath R. et al., An Improved MAGMA GEMM for Fermi GPUs, 2010 
 http://icl.cs.utk.edu/projectsfiles/magma/pubs/fermi_gemm.pdf 
Numerical methods 
Press W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second Edition, Cambridge, 1992 
 Chapter 2.3: LU decomposition and its applications 
 Chapter 2.4: Tridiagonal and band diagonal systems of equations 
 Chapter 19.0: Partial differential equations – Introduction 
 http://www.nr.com, PDF available at http://www.nrbook.com/a/bookfpdf.php 
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Solving PDEs with PGI CUDA Fortran 
Part 4: Initial value problems for ordinary differential equations 
 
Outline 
ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep Adams' predictor-
corrector and Gear's BDF methods. Example: Lorenz attractor. 
 
Ordinary differential equations and initial conditions 
1 ordinary differential equation for 1 unknown function y(x) of 1 variable x 
    
For a unique solution, the initial condition is required 
  
A set of M ordinary differential equations for M unknown functions ym(x) of 1 variable x 

or  
for vector Y of unknown functions ym and vector F of right-hand-side functions fm 
For a unique solution, M initial conditions are required 
  
These are initial value problems (IVPs) for ordinary differential equations (ODEs). 
Higher-order ODEs can be rewritten into a set of 1st-order ODEs (see, e.g., Numerical Recipes). 
 
Discretization 
x-grid and stepsize 
numerical solution  
Numerical methods below are, for simplicity, formulated for 1 ODE and the constant stepsize h.  
However, they all also work for y replaced by Y and h replaced by hn. 
 
Explicit Euler method 
the left-hand 1st-order finite-difference scheme for the 1st derivative 
  
after substitution into the ODE, we get the approximate Euler method 
  
it is an explicit formula as all terms on the right-hand side are known 
accuracy: 1st-order method (corresponds to the truncated Taylor expansion with the 0th and 1st term only) 
stability: consider a linear problem with constant coefficients 
   (solution:  )  
 Euler method:  
 but for   ; thus, there is a stepsize limit due to stability 
pros: a simple explicit formula 
cons: low accuracy => higher-order explicit methods 
 low stability   => implicit methods 
Implicit Euler method 
the right-hand 1st-order finite-difference scheme for the 1st derivative 
  
after substitution into the ODE, we get another Euler method 
  
it is an implicit formula as there are references to unknown yn+1 on the right-hand side 
again, it is only 1-st order accurate 
as above, consider the problem 
   (solution:  )  
the implicit formula:  
thus, implicit Euler method is stable for any (positive) h, it has an infinite region of absolute stability 
Semi-implicit Euler method for  
solving implicit Euler method by linearization of F(Y), similarly as in the Newton method for root finding 

  
i.e., in each step, MxM (Jacobian) matrix assembly and inversion is required
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Runge-Kutta methods 
– more accurate, higher-order methods for integrating ODEs 
– approximate the Taylor expansion by averaging the appropriately chosen dy/dx along y(x) between xn and xn+1  
– RK1: the explicit Euler method, the simplest RK method 

  
 for f(x) independent of y, it is equivalent to the rectangle quadrature rule 
– RK2: the 2nd-order RK method (midpoint method) 

  
 for f(x) independent of y, it is equivalent to the trapezoidal quadrature rule 
– RK4: the most popular, 4th-order RK method 

  
 for f(x) independent of y, it is equivalent to the Simpson's quadrature rule 
– a general p-step (explicit) RK method 

  
– stepsize control (different h in each step): guess a step size,  
 or make a few runs with step doubling,  
 or use RK methods with adaptive stepsize control (e.g., Numerical Recipes, Chapter 16.2) 
– pros: higher accuracy, better stability (not as much as in implicit variants) than explicit Euler 
– implicit RK methods available (more stable than the explicit methods, but not infinitely stable) 
 
Multistep methods 
A general linear multistep method 
  with  or  nonzero 
the methods are explicit and p-step for b0=0 and implicit and (p+1)-step otherwise 
 
Adams' family of multistep methods 
– based on polynomial approximation of f(x,y(x)) between xn+1-p and xn (xn+1 for implicit methods) 
 and analytical integration of the approximating polynomial between xn and xn+1 
  
– the order (i.e., the coincidence with the truncated Taylor expansion) is p for explicit and p+1 for implicit methods 
– the explicit p=1 method is the explicit Euler, the implicit p=0 method is the implicit Euler 
 
Coefficients ai and bi of Adams' methods 
explicit (Adams-Bashforth) methods            implicit (Adams-Moulton) methods    
all p: a1 = 1, other ai = 0             all p: a1 = 1, other ai = 0     
 i: 0 1 2 3 4         i: 0 1 2 3 4  
p=0: bi –     p=0: bi 1 
p=1: bi 0 1    p=1: 2bi 1 1 
p=2: 2bi 0 3 –1   p=2: 12bi 5 8 –1 
p=3:    12bi  0 23 –16 5  p=3: 24bi 9 19 –5 1 
p=4:    24bi  0 55 –59 37 –9       p=4: 720bi 251 646 –264 106 –19  
e.g., explicit p=2:   implicit p=1:  
 
The predictor-corrector algorithm: conventional application of Adams' methods 
 step P (predictor): applies an explicit Adams' formula of a given order, ynew = yn+1[explicit](xn+1) 
 step E (evaluation): updates fn+1 = f(xn+1,ynew) 
 step C (corrector): applies an implicit Adams' formula of the same order, ynew = yn+1[implicit](xn+1) 
 steps E and C can be repeated: variants PEC, PECE, P(EC)2E 
 i.e., a predictor extrapolates f into xn+1, a corrector makes use of this value for polynomial interpolation 
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– initialization of multistep methods by their lower-order relatives or by RK methods 
– the predictor-corrector algorithm is essentially explicit, its stability is therefore worse than that of the corrector 
– adaptive stepsize control is laborious 
 
Backward differentiation formulas (BDFs, Gear’s method) 
– based on polynomial approximation of y(x) between xn+1-p and xn+1 and analytical differentiation  
 of the approximating polynomial at xn+1 
  
– implicit p-step methods of the order p; for p=1: implicit Euler method 
– BDFs combined with the Newton method are known to have excellent stability (for p ≤ 6) 
– inevitable for stiff problems with two or more very different scales of the variable x on which the unknowns y 
 are changing (stability conditions require to accommodate to the fastest scale, i.e., with small stepsize, 
 while the process under study usually develops on the slowest scale, i.e., too many small steps would be 
 necessary with explicit methods) 
 
Coefficients ai and bi of Gear's methods 
  i: 1 2 3 4 5 6 i: 0 > 0  
p=1: ai 1      bi 1 0 
p=2: 3ai 4 –1     3bi 2 0 
p=3: 11ai 18 –9 2    11bi 6 0 
p=4: 25ai 48 –36 16 –3   25bi 12 0 
p=5: 137ai 300 –300 200 –75 12  137bi 60 0 
p=6: 147ai 360 –450 400 –225 72 –10 147bi 60 0  
e.g.,  p=2:  
 
On the crossroads 
Euler methods are extremely simple but inaccurate, too; the implicit variant is necessary when stability matters,  
 i.e., when larger stepsize is required than a stability condition allows. 
Runge-Kutta explicit methods are simple and fast enough both to code and to run, as each step requires just  
 evaluation of an explicit formula, and for many problems, they are accurate enough. However,  
 they are explicit and stepsize is limited. 
Predictor-corrector implementation, including stepsize adaptivity, is rather an artwork, but it was done and  
 can be reused from available packages. Still, stability is limited. 
Backward differentiation formulas, as a multistep method, share many features with predictor-corrector methods, 
 however, for their excellent stability, they are inevitable for stiff problems.  
 
And an example: Lorenz attractor 
– a problem of the 2D convection in the atmosphere, mathematically simplified as much as possible 
– a fully deterministic system with chaotic behavior 
– a simplified problem: 3 ODEs for temporal evolution of 3 variables (coefficients of eigenvalue expansions  
 of the stream function and temperature anomalies) in the 3D (phase) space 

    

 where A is a stream-function coefficient, B and C coefficients of temperature anomalies, P the Prandtl number, 
 r=Ra/RaCR with Ra the Rayleigh number,  corresponds to the size of a convection roll 
 and  is nondimensionalized time 
– parameters used by Lorenz (1963): P=10, r=28 and b=8/3, a sufficient time interval: 0..20 
– temporal solutions roll around two fixed points (the strange attractors) along a lemniscate-shaped trajectory (like ) 
– physically: the boundary layer of a convection cell grows, at some point it becomes unstable, convection resumes, 
 either as a clockwise or counterclockwise roll: chaotic behavior in a deterministic system 
– popular vizualization: A-B-C phase portraits 
 
Source codes 
– CPU: an arbitrary A-B-C point undergoes NT Runge-Kutta time steps, they are recorded and plotted 
– CPU: NX x NY x NZ points, spread within a 3D cube, undergo NT time steps, each independent of others,  
 only final positions of all points are recorded and plotted 
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– GPU: the previous case with one kernel 
– GPU: the previous case, now with a smaller kernel called repeatedly 
Goals: a massively parallel compute-bound kernel, SP/DP execution times, avoiding kernel execution timeout, 
 stability limits of explicit schemes 
 
Links and references 
Numerical methods 
Ascher U. M. and Petzold L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, 
 SIAM, 1998 
Press W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second Edition, Cambridge, 1992 
 Chapter 16.1: Runge-Kutta method 
 Chapter 16.2: Adaptive stepsize control for Runge-Kutta 
 Chapter 16.6: Stiff sets of equations 
 http://www.nr.com, PDFs available at http://www.nrbook.com/a/bookfpdf.php 
 
Lorenz attractor 
Schubert G. et al., Mantle Convection in the Earth and Planets, Cambridge, 2001, p. 332–337 
 http://ebookee.org/Mantle-Convection-in-the-Earth-and-Planets_661884.html 
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Solving PDEs with PGI CUDA Fortran 
Part 5: Explicit methods for evolutionary partial differential equations 
 
Outline 
Heat equation in one, two and three dimensions. Discretization stencils. Block and tiling implementations.  
Method of lines. 
 
Heat equation 
temporal evolution (physically, diffusion) of heat (temperature) in a domain 
a partial differential equation (1-st order in time t, 2-nd order in spatial variables X) for a function u(t, X)  
1D (one-dimensional) case: X = x, 2D case: X = x,y, 3D case: X = x,y,z 
 
General form:   
in 3D:    
Initial condition:  
Boundary conditions:  on the boundary 
i.e., the initial value problem (IVP) for the parabolic partial differential equation 
 
Discretization grids and schemes 
the equidistant grid on a rectangular domain, constant time steps 

    

moreover,   
 
Explicit FTCS scheme (forward-in-time, centered-in-space) 
FD1 for time:     (cf. Euler method for ODEs) 
FD2 for space: 
 
 
More spatial stencils: 
FD4    
FD6    
   
Discretized heat equation in 1D 
1D heat equation  
accuracy: 1st-order in time, 2-nd order in space 
stability condition:  
 
The sinus example 
domain    
initial condition     
boundary conditions constant and consistent with the initial condition 
analytical solution  
    
minimal number of timesteps to reach t = 1, according to the stability condition, is N = 2 J2 
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Equilibrium solution of the heat equation 
In the equilibrium limit, , the heat equation takes form of the Laplace's equation, 
 i.e., long-time solutions of the heat equation converge to the solutions of the Laplace's equation. 
Iterations  are called the Jacobi iterations, as they,  
 in the stability limit of , take form of , 
 that we have already called the Jacobi iterations for the 1D Laplace's equation. 
 
Discretized heat equation in 2D 
2D heat equation  

the stability condition  
 
The 2D sinus example 
domain    
initial condition     
boundary conditions constant and consistent with the initial condition 
analytical solution  
    
minimal number of timesteps to reach t = 1, according to the stability condition, is N = 4 J2 
 
GPU implementations of Jacobi iterations in 2D 
Block approach 
– the spatial domain is split into rectangular blocks (not necessarily squares) 
– each block of grid points (with halo or ghost points on block boundaries) is assigned to 1 CUDA block 
– each thread updates one grid point 
Notes: 
CUDA blocksize limit of 1024 threads/block corresponds to number of grid points, i.e., max. 32x32 (32x16, 64x8, ...) 
smem limit of 48 KB/multiprocessor: 4+ KB for a SP array of 32x32 grid points 
more work in a kernel: merging (e.g., 4) grid points for 1 thread 
   higher-order spatial discretization (FD4 etc.) 
keeping CUDA blocks smaller makes better multiprocessor occupancy (up to 8 blocks/multiprocessor) 
allows for implementation of wildly asynchronous kernels 
 
Tiling approach 
– the spatial domain is split into rectangular strips 
– each strip of grid points (with halos on strip boundaries) is assigned to 1 CUDA block 
– each thread updates one line of grid points 
– a 1D temporary smem array (a tile, degenerated in 2D to an abscissa) moves along these lines  
 together with two abscissas made from registers 
Notes: 
– CUDA blocksize ~ 64, 128, 256, e.g., for 10242 grid points and CUDA block size of 128, there is 8 CUDA blocks 
– smem limit high enough 
– well suited for FD4 etc. 
 
Discretized heat equation in 3D 
3D heat equation  

    
the stability condition  
 
The 3D sinus example 
domain    
initial condition     
boundary conditions constant and consistent with the initial condition 
analytical solution  
    
minimal number of timesteps to reach t = 1, according to the stability condition, is N = 6 J2 
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GPU implementations of Jacobi iterations in 3D 
Block approach 
size 3D blocks of grid points substantially limited by the CUDA blocksize limit of 1024 threads/block (e.tg., 16x8x8) 
 
Tiling approach 
– the spatial domain is split into rectangular columns 
– each column of grid points (with halos on column boundaries) is assigned to 1 CUDA block 
– each thread updates one line of grid points 
– a 2D temporary shared-memory array (the tile) moves along these lines together with two tiles made from registers 
 
Method of lines (MOL) 
motivation: use ODEs techniques for time integration instead of explicit Euler method in the FTCS scheme 
procedure: discretization of spatial variables but not the time variable, i.e., from PDEs to ODEs, 
 and solving the ODEs with advanced solvers 
 
Heat equation with Dirichlet boundary conditions 
1D:    

   

2D:     
etc. 
On GPU, the Jacobi iterations are required, both block or tiling approaches are possible. 
The GPU/CPU speedup is the same as the speedup for Jacobi iterations in the FTCS case but we received 
 the chance to converge faster than with the Euler method. 
However, using implicit ODEs solvers should be considered. 
 
Links and references 
Numerical methods 
Koev P., Numerical Methods for Partial Differential Equations, 2005 
 http://dspace.mit.edu/bitstream/handle/1721.1/56567/18-336Spring-2005/OcwWeb/Mathematics/18-336Spring-2005 
  /CourseHome/index.htm 
Press W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second Edition, Cambridge, 1992 
 Chapter 19.0: Introduction 
 Chapter 19.2: Diffusive initial value problems 
 Chapter 19.3: Initial value problems in multidimensions 
 Chapter 19.5: Relaxation methods for boundary value problems 
 http://www.nr.com, PDFs available at http://www.nrbook.com/a/bookfpdf.php 
Spiegelman M., Myths and Methods in Modelling, 2000 
 http://www.ldeo.columbia.edu/~mspieg/mmm/ 
 
CUDA techniques 
Micikevicius P., 3D finite difference computation on GPUs using CUDA, 2009 
Rivera G. and Tseng Ch.-W., Tiling optimizations for 3D scientific computations, 2000 
Venkatasubramanian S. and Vuduc R. W., Tuned and wildly asynchronous stencil kernels for hybrid CPU/GPU systems, 2009 
Xu Ch. et al., Tiling for performance tuning on different models of GPUs, 2009 
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Solving PDEs with PGI CUDA Fortran 
Part 6: More methods for more partial differential equations 
 
Outline 
Heat equation in 1D: implicit and Crank-Nicolson schemes. Heat equation in more dimensions: alternating-direction 
implicit method. Multigrid method. Wave equation in 1D and 2D: strings and drums. 
 
Heat equation in 1D: more schemes 
A symbol for the difference operator 
    
FTCS scheme with Dirichlet boundary conditions 
    
    
Features: 1st-order accurate in time, 2nd-order in space, conditionaly stable ( ) 
 
BTCS scheme (backward-time centered-space) 
implicit formula 
    

  

Features: 1st-order accurate in time, 2nd-order in space, unconditionaly stable (i.e., for any dt) 
Each time step requires direct solution to a linear algebraic system with tridiagonal matrix of size J x J. 
 
Crank-Nicolson scheme (CN) 
implicit formula with an average of FTCS and BTCS schemes on the right-hand side 
    

  

Features: 2nd-order accurate in both time and space, unconditionally stable 
Each time step requires direct solution to a linear algebraic system with tridiagonal matrix of size J x J. 
 
Heat equation in 2D: FTCS, BTCS and CN schemes 
Difference operators  

FTCS scheme   

BTCS scheme   

CN scheme   

For implicit BTCS and CN schemes, the matrix is J2 x J2, sparse and band diagonal (tridiagonal with fringes). 
Direct solution is possible with special methods. 
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Heat equation in more dimensions: alternating-direction implicit (ADI) method 
2D: splitting the time step into 2 substeps, each of lenght t/2 

    

3D: splitting the time step into 3 substeps, each of length t/3 

    

All substeps are implicit and each requires direct solutions to J independent linear algebraic systems 
 with tridiagonal matrices of size J x J.  
Example: ADI method for heat equation in 2D and 3D 
 
Wave equation 
a quantity travelling over the domain 
a partial differential equation (2nd-order in time t, 2nd-order in spatial variables X) for a function u(t, X)  
1D (one-dimensional) case: X = x, 2D case: X = x,y, 3D case: X = x,y,z 
 
General form:   
in 3D:    
Initial conditions:  
Boundary conditions:  on the boundary 
i.e., the initial value problem (IVP) for the hyperbolic partial differential equation 
 
Discretized wave equation in 1D 
1D wave equation  
    
can be rewritten into the form of two equations of the 1st-order in time 

    
Discretization grids 

    

 
Explicit FTBS scheme (forward-in-time, backward-in-space) 
FD1 for time:   
FD1 for space: 
 

Features: low accuracy, stability for    (Courant-Friedrichs-Lewy condition) 

PDEs in the matrix form: 

    

Discretized equations:  

    

and I is the identical matrix   
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Explicit FTCS scheme (forward-in-time, centered-in-space) 
FD1 for time:   
FD2 for space: 
 
Features: unstable for any dt, i.e., FTCS scheme inappropriate for the wave equation 
 
Implicit Crank-Nicolson scheme 
implicit formula with an average of FTBS and BTBS schemes on the right-hand side 

 

Features: higher accuracy, unconditional stability (i.e., for any dt) 
 
Example: travelling waves 
domain    
initial condition     
boundary condition  
analytical solution   
 
Links and references 
PDEs 
Koev P., Numerical Methods for Partial Differential Equations, 2005 
 http://dspace.mit.edu/bitstream/handle/1721.1/56567/18-336Spring-2005/OcwWeb/Mathematics/18-336Spring-2005 
  /CourseHome/index.htm 
Lehtinen J., Time-domain numerical solution of the wave equation, 2003 
 http://www.cs.unm.edu/~williams/cs530/wave_eqn.pdf 
Piché R., Partial Differential Equations, 2010 
 http://math.tut.fi/~piche/pde/index.html 
Press W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second Edition, Cambridge, 1992 
 Chapter 19.2: Diffusive initial value problems 
 Chapter 19.3: Initial value problems in multidimensions 
 Chapter 19.6: Multigrid methods for boundary value problems 
 http://www.nr.com, PDFs available at http://www.nrbook.com/a/bookfpdf.php 
Spiegelman M., Myths and Methods in Modelling, 2000 
 http://www.ldeo.columbia.edu/~mspieg/mmm/ 
 
Wave equation on GPU 
Michéa D. and Komatitsch D., Accelerating a three-dimensional finite-difference wave propagation code  
 using GPU graphics cards, 2010 


