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Solving PDEs with PGI CUDA Fortran
Part 6: More methods for more partial differential equations

OQOutline

Heat equation in 1D: implicit and Crank-Nicolson schemes. Heat equation in more
dimensions: alternating-direction implicit method. Wave equation. The string example.
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Heat equation in 1D: more schemes

A symbol for the difference operator
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FTCS scheme with Dirichlet boundary conditions
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Features: 1st-order accurate in time, 2nd-order in space,

conditionaly stable ( 3 <=1/2)
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Heat equation in 1D: more schemes
BTCS scheme (backward-time centered-space)

implicit formula

?’H = uj + B62u '”’H, B = dt/dx?
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Features: 1st-order accurate in time, 2nd-order in space,
unconditionaly stable (i.e., for any dt)

Each time step requires direct solution to a linear algebraic system with
tridiagonal matrix of size J x J.
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Heat equation in 1D: more schemes
Crank-Nicolson scheme (CN)

Implicit formula with an average of FTCS and BTCS schemes on the right-hand side
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Features: 2nd-order accurate in both time and space, unconditionally stable

Each time step requires direct solution to a linear algebraic system with
tridiagonal matrix of size J x J.
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Heat equation in 2D: FTCS, BTCS and CN schemes

Difference operators
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For implicit BTCS and CN schemes, the matrix is J* x J?, sparse and band diagonal
(tridiagonal with fringes).

Direct solution is possible with special methods.



Solving PDEs with PGI CUDA Fortran http://geo.mff.cuni.cz/~lh

Heat equation in more dimensions:
alternating-direction implicit (ADI) method

2D: splitting the time step into 2 substeps, each of lenght t/2
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3D: splitting the time step into 3 substeps, each of length t/3
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All substeps are implicit and each requires direct solutions to J independent linear
algebraic systems with tridiagonal matrices of size J x J.

Example: ADI method for heat equation in 2D and 3D
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Wave equation

a quantity travelling over the domain

a partial differential equation (2nd-order in time t, 2nd-order in spatial variables X)
for a function u(t, X)

1D (one-dimensional) case: X = X, 2D case: X = x,y, 3D case: X = Xx,y,Z

General form: 81&271'(169 X) — C2Au(t, X)
in 3D: OFu(t,x,y,2) = (07 + 02 + )u(t, v, y, 2)
Initial conditions: U(toa X) — uO(X), 8tu(to, X) — Vo (X)

Boundary conditions:  ©(t, XB) = up(t,XB) on the boundary

l.e., the initial value problem (IVP) for the hyperbolic partial differential equation
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Discretized wave equation in 1D

1D wave equation
2 _ 292
dfu(t,x) = c*0zu(t, x)
can be rewritten into the form of two equations of the 1st-order in time

(0 + cOz)u(t,x) = v(t,x)
(0y — cOp)v(t,x) =0

Discretization grids
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Discretized wave equation in 1D

Explicit FTBS scheme (forward-in-time, backward-in-space)

~ n+1
FD1 for time: 815“? ~ (uj — ’U’?)/dt
FD1 for space: dpuf & (—uf_y +uf)/dr

cdt
<1

Features: low accuracy, stability for j,, — = (Courant-Friedrichs-Lewy condition)

PDEs in the matrix form:
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Discretized equations
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and | is the identical matrix
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Discretized wave equation in 1D

Explicit FTCS scheme (forward-in-time, centered-in-space)

FD1 for time: 8tu§" ~ (U?H — u}")/dt

FD2 for space: Oulf ~ (—uf_y +ut,)/(2dx)

Features: unstable for any dt, i.e., FTCS scheme inappropriate for the wave equation

Implicit Crank-Nicolson scheme

implicit formula with an average of FTBS and BTBS schemes on the right-hand side
” n+1 u n —~A 51 u n u n+1 c dt 1 0 O .
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Features: higher accuracy, unconditional stability (i.e., for any dt)
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Discretized wave equation in 1D

Example: travelling waves

domain t>to=0, 2>20=0
initial condition u(0,2) = up(x), v(0,2) =0
boundary condition u(t,0) =0

analytical solution u(t,x) = ug(t — cx)
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Links and references

PDEs

Koev P., Numerical Methods for Partial Differential Equations, 2005
http://dspace.mit.edu/bitstream/handle/1721.1/56567
/18-336Spring-2005/0cwWeb/Mathematics/18-336Spring-2005
/CourseHome/index.htm

Lehtinen J., Time-domain numerical solution of the wave equation, 2003
http://www.cs.unm.edu/~williams/cs530/wave_eqgn.pdf

Piché R., Partial Differential Equations, 2010
http://math.tut.fi/—piche/pde/index.html

Press W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing,

Second Edition, Cambridge, 1992

Chapter 19.2: Diffusive initial value problems
Chapter 19.3: Initial value problems in multidimensions
Chapter 19.6: Multigrid methods for boundary value problems
http://www.nr.com, PDFs available at http://www.nrbook.com/a/bookfpdf.php

Spiegelman M., Myths and Methods in Modelling, 2000
http://www.ldeo.columbia.edu/~mspieg/mmm/
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Links and references

Wave equation on GPU

Michéa D. and Komatitsch D., Accelerating a three-dimensional finite-difference wave
propagation code using GPU graphics cards, 2010



