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Solving PDEs with PGI CUDA Fortran 
Part 6: More methods for more partial differential equations 
 
Outline 
Heat equation in 1D: implicit and Crank-Nicolson schemes. Heat equation in more 
dimensions: alternating-direction implicit method. Wave equation. The string example. 
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Heat equation in 1D: more schemes 
 
A symbol for the difference operator 

    
 
FTCS scheme with Dirichlet boundary conditions 
 

    
 

    
 
Features:  1st-order accurate in time, 2nd-order in space,  
   conditionaly stable (  ) 
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Heat equation in 1D: more schemes 
 
BTCS scheme (backward-time centered-space) 
 
implicit formula 
 

    
 

  

 
Features: 1st-order accurate in time, 2nd-order in space,  
   unconditionaly stable (i.e., for any dt) 
 
Each time step requires direct solution to a linear algebraic system with  
  tridiagonal matrix of size J x J. 
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Heat equation in 1D: more schemes 
 
Crank-Nicolson scheme (CN) 
 
implicit formula with an average of FTCS and BTCS schemes on the right-hand side 
 

    
 

 

 
Features: 2nd-order accurate in both time and space, unconditionally stable 
 
Each time step requires direct solution to a linear algebraic system with  
  tridiagonal matrix of size J x J. 
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Heat equation in 2D: FTCS, BTCS and CN schemes 
 
Difference operators
  
 

FTCS scheme    
 

BTCS scheme    
 

CN scheme     
 
For implicit BTCS and CN schemes, the matrix is J2 x J2, sparse and band diagonal  
  (tridiagonal with fringes). 
 
Direct solution is possible with special methods. 
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Heat equation in more dimensions:  
alternating-direction implicit (ADI) method 
 
2D: splitting the time step into 2 substeps, each of lenght t/2 

    

 
3D: splitting the time step into 3 substeps, each of length t/3 

    

 
All substeps are implicit and each requires direct solutions to J independent linear 
algebraic systems with tridiagonal matrices of size J x J.  
 
Example: ADI method for heat equation in 2D and 3D 
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Wave equation 
 
a quantity travelling over the domain 
a partial differential equation (2nd-order in time t, 2nd-order in spatial variables X)  
  for a function u(t, X)  
1D (one-dimensional) case: X = x, 2D case: X = x,y, 3D case: X = x,y,z 
 

General form:    
 

in 3D:      
 
Initial conditions:   
 
Boundary conditions:  on the boundary 
 
i.e., the initial value problem (IVP) for the hyperbolic partial differential equation 
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Discretized wave equation in 1D 
 
1D wave equation  
 

    
 
can be rewritten into the form of two equations of the 1st-order in time 
 

    
 
Discretization grids 
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Discretized wave equation in 1D 
 
Explicit FTBS scheme (forward-in-time, backward-in-space) 
 

FD1 for time:   
 
FD1 for space:    

Features: low accuracy, stability for    (Courant-Friedrichs-Lewy condition) 
 
PDEs in the matrix form: 

      
Discretized equations 

 

     and I is the identical matrix   
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Discretized wave equation in 1D 
 
Explicit FTCS scheme (forward-in-time, centered-in-space) 
 

FD1 for time:   
 
FD2 for space:    
 
Features: unstable for any dt, i.e., FTCS scheme inappropriate for the wave equation 
 
Implicit Crank-Nicolson scheme 
 
implicit formula with an average of FTBS and BTBS schemes on the right-hand side 

 

 
Features: higher accuracy, unconditional stability (i.e., for any dt) 
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Discretized wave equation in 1D 
 
Example: travelling waves 
 
domain      
 
initial condition      
 
boundary condition   
 
analytical solution    
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Links and references 
 
PDEs 
Koev P., Numerical Methods for Partial Differential Equations, 2005 
 http://dspace.mit.edu/bitstream/handle/1721.1/56567 
 /18-336Spring-2005/OcwWeb/Mathematics/18-336Spring-2005 
 /CourseHome/index.htm 
Lehtinen J., Time-domain numerical solution of the wave equation, 2003 
 http://www.cs.unm.edu/~williams/cs530/wave_eqn.pdf 
Piché R., Partial Differential Equations, 2010 
 http://math.tut.fi/~piche/pde/index.html 
Press W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing,  
  Second Edition, Cambridge, 1992 
 Chapter 19.2: Diffusive initial value problems 
 Chapter 19.3: Initial value problems in multidimensions 
 Chapter 19.6: Multigrid methods for boundary value problems 
 http://www.nr.com, PDFs available at http://www.nrbook.com/a/bookfpdf.php 
Spiegelman M., Myths and Methods in Modelling, 2000 
 http://www.ldeo.columbia.edu/~mspieg/mmm/ 
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Links and references 
 
Wave equation on GPU 
Michéa D. and Komatitsch D., Accelerating a three-dimensional finite-difference wave  
 propagation code using GPU graphics cards, 2010 


