Summary

Surface acceleration caused by the radial modes depends only on the M_r component of the centroid moment tensor and on its depth assuming the isotropic component to be negligible. The Q_k-mode amplitude enables one to obtain a relatively narrow interval of Q_k values, whereas S_k-mode amplitude is more sensitive to centroid depth. We have used these facts to analyze the 2010 Maule (Chile) M_{W}=8.8 and 2011 Tohoku (Japan) $M_{W}=9.1$ earthquakes using PREM. Superconducting gravimeter data available within the framework of the Global Geodynamic Project reveal that the M_r-components of these earthquakes should be in the interval 0.95–1.15 10^{22} Nm (Maule) and 1.50–1.75 10^{22} Nm (Tohoku), respectively.

We re-evaluated the modal quality factors Q_k needed to obtain constraints on M_r self-consistently. The joint analysis of gravity data from the Maule and Tohoku events yields $Q = 5500 \pm 140$ for the S_0 mode and $Q = 2000 \pm 80$ for the S_0 mode. We were not able to determine the quality factor of the S_0 mode with an accuracy sufficient to allow meaningful constraints ($Q = 1120 \pm 270$), details in Zábranová et al. (2012b).

We also used the S_0 and S_0 modes of the 2012 Sumatra double-event $M_{W}=9.6$ and 8.2 to obtain constraints on the M_r components of these earthquakes. However, records of these events are not well suited for determination of the quality factors.

Superconducting gravimeter data

The data for the Maule and Tohoku earthquakes are freely available on the Global Geodynamic Project web pages. Moreover, we have only three records of the Sumatra earthquakes from Poznań and Weitstetten stations. A high-pass Butterworth filter (above 0.1 mHz) was used to remove local tides from raw gravity data (sampled at 1 s) corrected for atmospheric effects using locally recorded atmospheric pressure data and a nominal admittance factor of -3 nm/s²/hPa.

Method and Synthetic calculations

The acceleration of a spherically symmetric, non-rotating, anelastic Earth excited by a moment-tensor source M is given by a superposition of spherical and toroidal modes,

$$a_{n_1,n_2}(x,y,z)=\sum_{\mu=0}^{\infty}C_{n_1,n_2}^{\mu}(\mu,\omega)M_{\mu}(\omega)P_{n_1,n_2}^{\mu}(\theta,\phi)$$

where the upper 3-km layer of water is replaced by a 1.2-km-thick rock-layer with the same mass, by means of our pseudospectral finite-difference matrix-eigenvalue approach (Zábranová et al., 2009, 2012a).

If non-spherical corrections due to the rotation and elasticity are considered in this degree-zero case, only the frequencies of the modes are slightly shifted. Moreover, Aisat et al. (2007) showed that for a three-dimensional rotating elastic Earth model, the difference between theoretically predicted minimum and maximum amplitudes of the S_0 mode reaches only 2%; therefore, we assume that excitation is almost independent of source-station horizontal geometry, and we averaged observed signals from different stations to suppress the noise.

2010 Maule earthquake

The triangles represent the SG sites used in this study. Star cross are employed for both events, yellow only for the 2010 Maule earthquake and yellow only for the 2011 Tohoku earthquake.

Quality factors of radial modes

We analyzed gravity data from the Maule (left panels) and Tohoku (right panels) earthquakes (32- and 19-days long records, respectively, for 0S0, 13-days long records for 1S0 and 5-days long records for 2S0) using several shifted time windows and the fact that

$$Q^{-1} = T/2\pi\Delta t \ln (A_{n_1,n_2}(t_2)/A_{n_1,n_2}(t_1))$$

for each record, where Δt is a time period of a mode, Δt_{fr} is time shift from the origin time and Δt_{fr} is time shift between time windows used to calculate spectral amplitudes A_{n_1,n_2} and A_{n_1,n_2}. We have used FFT filter for and Fourier transform were applied to 600- and 300-hour records.

References

We thank F. Gallovič for his help with data processing, J. Žáhulek for discussions and J. Kollár for a technical help. This research has been supported by the Grant Agency of the Charles University under the projects No. 14610 and SVV-2012-26308 and by research project MSM 0021620860 of the Czech Ministry of Education. The SG data was obtained with support of the project LM2050008.

Acknowledgements

2011 Tohoku earthquake

2012 Sumatra double earthquake

Constraints on the M_r components of the 2012 Sumatra double-event (for several depths of the centroid) obtained from the 0S0 (solid line), 1S0 (dashed line) and 2S0 (dotted line). For each depth, the interval corresponding to one standard deviation of amplitude spectra and quality factors is drawn. Stars denote published point-source solutions (PS1, PS2 and PS3).

Vertical acceleration amplitude spectra of the modes S_0 and S_0 from the SG data (red - average of three records from Poznań and Weitstetten stations) and the three synthetics for the point-source (PS1, PS2, PS3). A Hann filter and Fourier transform were applied to 450- and 170-hour time series.