Jan Burjánek

Born: 3rd of February 1979, Prague

Current position: Senior Researcher and Purkyne Fellow at Geophysical Institute of Czech Academy of Science, Prague

Interests: Wave propagation, site effects, signal processing, numerical simulations of strong ground motion, earthquake dynamics, probabilistic seismic hazard assessment, seismic studies of unstable rock slopes.

ReserachID profile:







Long-term visits:


Summer schools & Courses:


Teaching activity:



Journals with IF:

  1. Müller, J. & Burjánek, J., (2023). In situ estimation of effective rock elastic moduli by seismic ambient vibrations, Int. J. Rock Mech. Min. Sci., 170, 105459. https://doi.org/10.1016/j.ijrmms.2023.105459
  2. [link]

  3. Labuta, M., Oprsal, I., & Burjánek, J., (2023). Modelling the seismic response of the Mýtina maar volcanic structure, Earth Planets and Space, 75, 80. https://doi.org/10.1186/s40623-023-01822-7
  4. [link]

  5. Oprsal, I., Sekiguchi, H., Iwata, T., & Burjánek, J., (2023). Influence of low-velocity superficial layer on long-period basin-induced surface waves in eastern Osaka basin, Earth Planets and Space, 75, 55. https://doi.org/10.1186/s40623-023-01804-9
  6. [link]

  7. Hobiger, M., P. Bergamo, W. Imperatori, F. Panzera, A.M. Lontsi, V. Perron, C. Michel, J. Burjánek, & D. Fäh (2021). Site characterization of Swiss strong-motion stations: The benefit of advanced processing algorithms, Bull. Seism. Soc. Am., 111, 1713-1739. doi:10.1785/0120200316
  8. [link]

  9. Häusler, M., C. Michel, J. Burjánek, & D. Fäh (2021). Monitoring the Preonzo rock slope instability using resonance mode analysis, J. Geophys. Res. Earth Surf., 126(4), e2020JF005709. doi:10.1029/2020JF005709
  10. [link]

  11. Oprsal, I., J. Thun, J. Burjánek & D. Fäh (2021). Measurements and modeling of the post-failure micro-deformations and tilts of the Preonzo unstable slope, Alpe di Roscioro, Switzerland, Engineering Geology, 280, 105919. doi:10.1016/j.enggeo.2020.105919
  12. [link]

  13. Burjánek, J., U. Kleinbrod, & D. Fäh (2019). Modeling the seismic response of unstable rock mass with deep compliant fractures, J. Geophys. Res. - Solid Earth, 124, 13039-13059. doi:10.1029/2019JB018607
  14. [link]

  15. Häusler, M., C. Michel, J. Burjánek, & D. Fäh (2019). Fracture network imaging on rock slope instabilities using resonance mode analysis, Geophys. Res. Lett., 46, 6497-6506. doi:10.1029/2019GL083201
  16. [link]

  17. Kleinbrod, U., Burjánek, J., & , D. Fäh (2019). Ambient vibration classification of unstable rock slopes: A systematic approach, Engineering Geology, 249, 198-217. doi: 10.1016/j.enggeo.2018.12.012
  18. [link]

  19. Burjánek, J., Gischig, V., Moore, J. R., Fäh, D. (2018). Ambient vibration characterization and monitoring of a rock slope close to collapse, Geophys. J. Int., 212, 297-310. doi: 10.1093/gji/ggx424
  20. [link]

  21. Kleinbrod, U., Burjánek, and Fäh, D. (2017). On the seismic response of instable rock slopes based on ambient vibration recordings, Earth Planets Space, 69, 126, pp. 9. doi: 10.1186/s40623-017-0712-5
  22. [link]

  23. Kleinbrod, U., Burjánek, J., Hugentobler, M., Amann, F., and Fäh, D. (2017). A comparative study on seismic response of two unstable rock slopes within same tectonic setting but different activity level, Geophys. J. Int., 211, 1428-1448. doi: 10.1093/gji/ggx376
  24. [link]

  25. Poggi, V., Burjánek, J., Michel, C., Fäh, D. (2017). Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net, Geophys. J. Int., 210, 645-659. doi: 10.1093/gji/ggx192
  26. [link]

  27. Vackář, J., Burjánek, J., Gallovič, F., Zahradník, J., Clinton, J. (2017). Bayesian ISOLA: new tool for automated centroid moment tensor inversion, Geophys. J. Int., 210, 693-705. doi: 10.1093/gji/ggx158
  28. [link]

  29. Panzera, F., D'Amico, S. , Burjánek, J., Pischiutta, M. (2017). Advance in seismic site response: Usual practices and innovative methods, Phys. Chem. Earth, 98, 1-2. doi:10.1016/j.pce.2017.04.005
  30. [link]

  31. Vackář, J., Burjánek, J., Zahradník, J. (2015). Automated detection of long-period disturbances in seismic records; MouseTrap code, Seism. Res. Lett., 86, 442-450. doi:10.1785/0220140168
  32. [link]

  33. Poggi, V., Ermert, L., Burjánek, J., Michel, C., Fäh, D. (2015). Modal analysis of 2-D sedimentary basin from frequency domain decomposition of ambient vibration array recordings, Geophys. J. Int., 200 (1), 615-626. doi: 10.1093/gji/ggu420
  34. [link]

  35. Michel, C., Edwards, B., Poggi, V., Burjánek, J., Roten, D., Cauzzi, C., Fäh, D. (2014). Assessment of site effects in alpine regions through systematic site characterization of seismic stations, Bull. Seism. Soc. Am., 104, 2809-2826. doi: 10.1785/0120140097
  36. [PDF at BSSA-Online] [PDF at GSW]

  37. Ermert, L., Poggi, V., Burjánek, J., Fäh, D. (2014). Fundamental and higher 2-D resonance modes of an Alpine valley, Geophys. J. Int., 198 (2), 795-811. doi: 10.1093/gji/ggu072
  38. [link]

  39. Burjánek, J., Edwards, B., Fäh, D. (2014). Empirical evidence of local seismic effects at sites with pronounced topography: a systematic approach, Geophys. J. Int., 197 (1), 608-619. doi: 10.1093/gji/ggu014
  40. [link]

  41. Baumann, C., Burjánek, J., Michel, C., Fäh, D., Dalguer, L. A. (2013). Fault zone signatures from ambient vibration measurements: a case study in the region of Visp (Valais, Switzerland), Swiss J. Geosci., 106 (3), 529-541. doi: 10.1007/s00015-013-0155-3
  42. [PDF at Springer Link]

  43. Poggi, V., Fäh, D., Burjánek, J., Giardini, D. (2012). The use of Rayleigh wave ellipticity for site-specific hazard assessment and microzonation. Application to the city of Lucerne, Switzerland., Geophys. J. Int., 188 (3), 1154-1172. doi: 10.1111/j.1365-246X.2011.05305.x
  44. [link]

  45. Burjánek, J., Moore, J.R., Yugsi-Molina, F.X., Fäh, D. (2012). Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int., 188 (2), 559-569. doi: 10.1111/j.1365-246X.2011.05272.x
  46. [link]

  47. Fäh, D., Moore, J.R., Burjánek, J., et al. (2012). Coupled seismogenic geohazards in alpine regions, B. Geofis. Teor. Appl., 53, 485-508. doi: 10.4430/bgta0048
  48. [link]

  49. Moore, J.R., Gischig, V., Burjánek, J., Loew, S., Fäh, D. (2011). Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland), Bull. Seism. Soc. Am., 101, 3110-3116. doi: 10.1785/0120110127
  50. [link]

  51. Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J. R., Fäh, D. (2010). Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180 (2), 820-828. doi: 10.1111/j.1365-246X.2009.04451.x
  52. [link]

  53. Gallovič, F., Käser, M., Burjánek, J., Papaioannou, C. (2010). 3-D Modeling of Near-Fault Ground Motions with Non-Planar Rupture Models and Topography: the case of the 2004 Parkfield Earthquake, J. Geophys. Res., 115, B03308. doi:10.1029/2008JB006171
  54. [link]

  55. Gallovič, F., Burjánek, J. (2007). High-frequency Directivity in Strong Ground Motion Modeling Methods, Ann. Geophys., 50 (2), 203-211.
  56. [link]

  57. Burjánek, J., Zahradník, J. (2007). Dynamic stress field of a kinematic earthquake source model with k-squared slip distribution, Geophys. J. Int., 171 (3), 1082-1097. doi: 10.1111/j.1365-246X.2007.03548.x
  58. [link]
Chapters in books: Conference proceedings: Thesis: Popularization of geophysics (in czech):


Selected conferences’ contributions:



seis Jan Burjanek Jan Burjánek fractal composite model Burjanek, J. Burjanek Burjánek, J. Burjánek

Last changes: Monday, June 23, 2023